Skip to content

[A-L] (2023/24) Foglio 2 - Esercizio 4 #177

Discussion options

You must be logged in to vote

$$S_3 = \{ \begin{pmatrix} 1& 2 & 3\\ 1& 2& 3 \end{pmatrix}, \begin{pmatrix} 1& 2 & 3\\ 1& 3& 2 \end{pmatrix},\begin{pmatrix} 1& 2 & 3\\ 2& 1& 3 \end{pmatrix},\begin{pmatrix} 1& 2 & 3\\ 3& 2& 1 \end{pmatrix},\begin{pmatrix} 1& 2 & 3\\ 2& 3& 1 \end{pmatrix},\begin{pmatrix} 1& 2 & 3\\ 3& 1& 2 \end{pmatrix}\}$$

Affinchè un gruppo sia commutativo $s \star s' = s' \star s, \forall s,s' \in G$, quindi ci basta dimostrare che ciò non valga per una coppia $f,f' \in S_3$.
Siano:

$$f = \begin{pmatrix} 1& 2 & 3\\ 1& 3& 2 \end{pmatrix}, f' = \begin{pmatrix} 1& 2 & 3\\ 2& 1& 3 \end{pmatrix}$$

$$f \circ f' = \begin{pmatrix} 1& 2 & 3\\ 3& 1& 2 \end{pmatrix}, f'\circ f = \begin{pmatrix} 1& 2 & 3\\ 2& 3& …

Replies: 5 comments

Comment options

You must be logged in to vote
0 replies
Answer selected by Elia-Belli
Comment options

You must be logged in to vote
0 replies

This comment has been hidden.

Comment options

You must be logged in to vote
0 replies
Comment options

You must be logged in to vote
0 replies
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
[A-L] (2023/24) Foglio 2 Esercizi tratti dal 2° foglio di esercizi (11 ottobre) dei Proff. Piazza e Viaggi (A.A. 2023/24)
3 participants
Converted from issue

This discussion was converted from issue #22 on December 15, 2023 12:17.