Skip to content

Commit 94deca7

Browse files
ozgesozges
ozges
authored and
ozges
committed
Classifier Updated
1 parent 424023f commit 94deca7

File tree

2 files changed

+34
-29
lines changed

2 files changed

+34
-29
lines changed

__pycache__/dataprep.cpython-36.pyc

1.46 KB
Binary file not shown.

classifier.py

+34-29
Original file line numberDiff line numberDiff line change
@@ -2,51 +2,56 @@
22
import numpy as np
33
import dataprep
44

5-
sess = tf.InteractiveSession()
5+
class Classifier:
6+
7+
def __init__(self,first_hidden=4):
68

7-
inputs = tf.placeholder(tf.float32, shape = [None,100])
9+
self.sess = tf.InteractiveSession()
810

9-
outputs = tf.placeholder(tf.float32, shape = [None,1])
11+
self.inputs = tf.placeholder(tf.float32, shape = [None,100])
1012

11-
first_hidden = 4
13+
self.outputs = tf.placeholder(tf.float32, shape = [None,1])
1214

13-
w1 = tf.Variable(tf.truncated_normal([100,first_hidden]))
15+
self.first_hidden = first_hidden
1416

15-
b1 = tf.Variable(tf.zeros([first_hidden]))
17+
self.w1 = tf.Variable(tf.truncated_normal([100,self.first_hidden]))
1618

17-
layer_1_output = tf.nn.sigmoid(tf.matmul(inputs,w1) + b1 )
19+
self.b1 = tf.Variable(tf.zeros([self.first_hidden]))
1820

19-
w2 = tf.Variable(tf.truncated_normal([first_hidden,100]))
21+
self.layer_1_output = tf.nn.sigmoid(tf.matmul(self.inputs,self.w1) + self.b1 )
2022

21-
b2 = tf.Variable(tf.zeros([100]))
23+
self.w2 = tf.Variable(tf.truncated_normal([self.first_hidden,100]))
2224

23-
layer_2_output = tf.nn.sigmoid(tf.matmul(layer_1_output,w2) + b2)
25+
self.b2 = tf.Variable(tf.zeros([100]))
2426

25-
w3 = tf.Variable(tf.truncated_normal([100,1]))
27+
self.layer_2_output = tf.nn.sigmoid(tf.matmul(self.layer_1_output,self.w2) + self.b2)
2628

27-
b3 = tf.Variable(tf.zeros([1]))
29+
self.w3 = tf.Variable(tf.truncated_normal([100,1]))
2830

29-
result = tf.nn.sigmoid(tf.matmul(layer_2_output,w3) + b3 )
31+
self.b3 = tf.Variable(tf.zeros([1]))
32+
33+
def error_correction(self):
3034

31-
error = 0.5*tf.reduce_sum(tf.subtract(result,outputs) * tf.subtract(result,outputs))
35+
result = tf.nn.sigmoid(tf.matmul(self.layer_2_output,self.w3) + self.b3 )
3236

33-
train_fixer = tf.train.GradientDescentOptimizer(0.05).minimize(error)
37+
self.error = 0.5*tf.reduce_sum(tf.subtract(result,self.outputs) * tf.subtract(result,self.outputs))
3438

35-
sess.run(tf.initialize_all_variables())
39+
self.train_fixer = tf.train.GradientDescentOptimizer(0.05).minimize(self.error)
3640

41+
self.sess.run(tf.initialize_all_variables())
42+
43+
def trainNN(self,x,y):
3744

38-
#training_inputs = [[0.0, 0.0], [0.0, 1.0], [1.0, 0.0], [1.0, 1.0]]
45+
for i in range(0,3):
46+
_,loss = self.sess.run([self.train_fixer, self.error],feed_dict =
47+
{self.inputs:np.array(x),self.outputs:np.array(y)})
48+
print (loss)
3949

4050

41-
training_inputs = [dataprep.v1,dataprep.v2]
42-
43-
44-
45-
output1 = [[0.0], [1.0]]
46-
print ("OUTPUT1")
47-
print (output1)
48-
49-
for i in range(0,3):
50-
_,loss = sess.run([train_fixer, error],feed_dict =
51-
{inputs:np.array(training_inputs),outputs:np.array(output1)})
52-
print (loss)
51+
52+
model = Classifier()
53+
model.error_correction()
54+
55+
x = [dataprep.v1,dataprep.v2]
56+
y = [[0.0], [1.0]]
57+
model.trainNN(x,y)

0 commit comments

Comments
 (0)