-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNueralNet.py
273 lines (177 loc) · 8.48 KB
/
NueralNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import numpy as np
#Todo fix hidden bias to be array
class NueralNet():
"""docstring for NueralNet"""
def __init__(self,learningRate,activFunc,outputActivFunc,numInputs,numOutputs,numHLayers,numHiddenNodes = None,hWeights = [], hBias = None, outputBias = None, outWeights = []):
#TODO Complete param check
self.learningRate = learningRate or 1
self.numInputs = numInputs
self.numHiddenNodes = numHiddenNodes #Array
self.numHLayers = numHLayers
self.hiddenLayers = []
self.outputLayer = Layer(numOutputs,outputActivFunc,outputBias)
self.hBias = hBias
self.setUpHiddenLayers(hWeights,activFunc)
self.setHiddenToOutput(outWeights)
#multiset
def setUpHiddenLayers(self,hWeights,activFunc):
for i in range(self.numHLayers):
self.hiddenLayers.append(Layer(self.numHiddenNodes[i], activFunc, self.hBias))
if i < len(hWeights):
self.setInputToHiddenWeights(i,hWeights[i])
else:
self.setInputToHiddenWeights(i,[])
#multiSet
def train(self,inputs, labels):
self.fullForwardPass(inputs);
#Get output layer gradients
outputGrad = [0] * len(self.outputLayer.nuerons)
for i in range(len(self.outputLayer.nuerons)):
outputGrad[i] = self.outputLayer.nuerons[i].calcGrad(labels[i])
#####Get hidden layer gradients#####################################
hiddenGrad = []
hiddenGrad.insert(0,[0] * len(self.hiddenLayers[-1].nuerons))
#output to first hidden
for i in range(len(self.hiddenLayers[-1].nuerons)):
outputErrorSum = 0
for j in range(len(self.outputLayer.nuerons)):
outputErrorSum += outputGrad[j] * self.outputLayer.nuerons[j].weights[i]
hiddenGrad[0][i] = outputErrorSum * self.hiddenLayers[-1].nuerons[i].activFunc(deriv=True)
#TODO: Check math for counting, way to complicated here
for i in range(self.numHLayers-2,-1,-1):
hiddenGrad.insert(0,[0] * len(self.hiddenLayers[i].nuerons))
for k in range(len(self.hiddenLayers[i].nuerons)):
outputErrorSum = 0
for j in range(len(self.hiddenLayers[i+1].nuerons)):
outputErrorSum += hiddenGrad[1][j] * self.hiddenLayers[i+1].nuerons[j].weights[k]
hiddenGrad[0][k] = outputErrorSum * self.hiddenLayers[i].nuerons[k].activFunc(deriv=True)
#Adjust output layer weights
for i in range(len(self.outputLayer.nuerons)):
for w in range(len(self.outputLayer.nuerons[i].weights)):
# print("output: ",self.learningRate * self.outputLayer.nuerons[i].getInputAtIndex(i) * outputGrad[i])
self.outputLayer.nuerons[i].weights[w] -= self.learningRate * self.outputLayer.nuerons[i].getInputAtIndex(w) * outputGrad[i]
self.outputLayer.nuerons[i].bias -= outputGrad[i] * self.learningRate
#Adjust hidden layer weights
for k in range(self.numHLayers-1,-1,-1):
if k == 0:
break;
for i in range(len(self.hiddenLayers[k].nuerons)):
for w in range(len(self.hiddenLayers[k].nuerons[i].weights)):
self.hiddenLayers[k].nuerons[i].weights[w] -= self.learningRate * hiddenGrad[k][i] * self.hiddenLayers[k].nuerons[i].getInputAtIndex(w)
self.hiddenLayers[k].nuerons[i].bias -= self.learningRate * hiddenGrad[k][i]
for i in range(len(self.hiddenLayers[0].nuerons)):
for w in range(len(self.hiddenLayers[0].nuerons[i].weights)):
self.hiddenLayers[0].nuerons[i].weights[w] -= self.learningRate * hiddenGrad[0][i] * self.hiddenLayers[0].nuerons[i].getInputAtIndex(w)
self.hiddenLayers[0].nuerons[i].bias -= self.learningRate * hiddenGrad[0][i]
# print("hidden: ",self.learningRate * hiddenGrad[i] * self.hiddenLayer.nuerons[i].getInputAtIndex(i))
#MultiSet
def fullForwardPass(self, inputs):
currOutput = self.hiddenLayers[0].forwardPass(inputs)
for i in range(1,self.numHLayers):
currOutput = self.hiddenLayers[i].forwardPass(currOutput)
return self.outputLayer.forwardPass(currOutput)
#multiSet
def setInputToHiddenWeights(self,index,hWeights):
if index == 0:
numInputs = self.numInputs
else:
numInputs = len(self.hiddenLayers[index-1].nuerons)
for nueron in self.hiddenLayers[index].nuerons:
if hWeights and len(hWeights) >= numInputs:
nueron.weights = hWeights[:numInputs]
else:
nueron.weights = np.random.rand(numInputs)
#MultiSet
def setHiddenToOutput(self,outWeights):
for nueron in self.outputLayer.nuerons:
if outWeights and len(outWeights) >= len(self.hiddenLayers[-1].nuerons):
nueron.weights = outWeights[:len(self.hiddenLayers[-1].nuerons)]
else:
nueron.weights = np.random.rand(len(self.hiddenLayers[-1].nuerons))
#Multiset
def getOverallError(self, trainingData):
error = 0
for i in range(len(trainingData)):
trainingInputs, trainingOutputs = trainingData[i]
self.fullForwardPass(trainingInputs)
for j in range(len(trainingOutputs)):
error += self.outputLayer.nuerons[j].calcError(trainingOutputs[j])
return error
def inspect(self):
print('------')
print('* Inputs: {}'.format(self.numInputs))
print('------')
print('Hidden Layer')
for i in range(len(self.hiddenLayers)):
self.hiddenLayers[i].inspect()
print('------')
print('* Output Layer')
self.outputLayer.inspect()
print('------')
def predict (self,inputData):
self.fullForwardPass(inputData)
return self.outputLayer.outputs
class Layer():
"""docstring for Layer"""
def __init__(self, numNuerons,activFunc ,bias = None):
self.bias = bias or 1
self.nuerons = []
for i in range(numNuerons):
self.nuerons.append(Nueron(self.bias,activFunc))
def inspect(self):
print('Neurons:', len(self.nuerons))
for n in range(len(self.nuerons)):
print(' Neuron', n)
for w in range(len(self.nuerons[n].weights)):
print(' Weight:', self.nuerons[n].weights[w])
print(' Bias:', self.bias)
def forwardPass(self,input):
outputs = []
for nueron in self.nuerons:
outputs.append(nueron.getOutput(input))
self.outputs = outputs
return outputs
class Nueron:
"""docstring for Nueron"""
def __init__(self,bias,activationFunc):
self.weights = []
self.bias = bias
self.activFunc = ActivationFuncs(self).getFunc(activationFunc)
def getOutput(self,inputs):
# self.inputs = np.append(input,1)
# exit(-1)
# self.output = self.sigmoid(self.inputs.dot(self.weights))
self.inputs = inputs
output = 0
for i in range(len(inputs)):
output += inputs[i] * self.weights[i]
self.output = self.activFunc(output + self.bias)
return self.output
def calcError(self,label):
return 0.5 * (label - self.output) ** 2
def randomWeights(self,num):
return np.random.uniform(low=0.5, high=13.3, size=(num))
def calcGrad(self, targetOutput):
return -(targetOutput - self.output) * self.activFunc(deriv=True);
def getInputAtIndex(self,index):
return self.inputs[index]
class ActivationFuncs():
def __init__(self,nueron):
self.nueron = nueron
def getFunc(self,activFunc):
return getattr(self,activFunc)
def sigmoid(self,x=0,deriv=False):
if deriv:
return self.nueron.output * (1 - self.nueron.output)
else:
return 1 / (1 + np.exp(-x))
def tanh(self,x=0,deriv=False):
if deriv:
return 1 - self.nueron.output ** 2
else:
return (np.exp(x) - np.exp(-x))/(np.exp(x) + np.exp(-x))
def linear(self,x=0,deriv=False):
if deriv:
return 1
else:
return x