-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpostprocessing_and_results.py
83 lines (63 loc) · 3.06 KB
/
postprocessing_and_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import numpy as np
import pandas as pd
class PostProcess:
def __init__(self, run_train, test_loss, df_new_test, results_dir, train_loss):
self.run_train = run_train
self.test_loss = test_loss
self.df_new_test = df_new_test
self.RESULTS_DIR = results_dir
self.train_loss = train_loss
def denormalization(self):
#Denormalization
# TODO: Should we be using the mean instead of -1?
mse_1 = np.array(self.test_loss).squeeze()[-1][0]
mse_2 = np.array(self.test_loss).squeeze()[-1][1]
mse_3 = np.array(self.test_loss).squeeze()[-1][2]
mse_4 = np.array(self.test_loss).squeeze()[-1][3]
rmse_1 = np.sqrt(mse_1)
rmse_2 = np.sqrt(mse_2)
rmse_3 = np.sqrt(mse_3)
rmse_4 = np.sqrt(mse_4)
print("rmse_1:",rmse_1)
print("rmse_2:",rmse_2)
print("rmse_3:",rmse_3)
print("rmse_4:",rmse_4)
rmse_denorm1 = (rmse_1 * (self.df_new_test['Kt'].max() - self.df_new_test['Kt'].min()))+ self.df_new_test['Kt'].mean()
rmse_denorm2 = (rmse_2 * (self.df_new_test['Kt_2'].max() - self.df_new_test['Kt_2'].min()))+ self.df_new_test['Kt_2'].mean()
rmse_denorm3 = (rmse_3 * (self.df_new_test['Kt_3'].max() - self.df_new_test['Kt_3'].min()))+ self.df_new_test['Kt_3'].mean()
rmse_denorm4 = (rmse_4 * (self.df_new_test['Kt_4'].max() - self.df_new_test['Kt_4'].min()))+ self.df_new_test['Kt_4'].mean()
print("rmse_denorm1:",rmse_denorm1)
print("rmse_denorm2:",rmse_denorm2)
print("rmse_denorm3:",rmse_denorm3)
print("rmse_denorm4:",rmse_denorm4)
rmse_denorm_all = [rmse_denorm1, rmse_denorm2, rmse_denorm3, rmse_denorm4]
rmse_mean = np.mean([rmse_denorm1, rmse_denorm2, rmse_denorm3, rmse_denorm4])
print("rmse_mean:", rmse_mean)
print(self.df_new_test['Kt'].describe())
print('\n')
print(self.df_new_test['Kt_2'].describe())
print('\n')
print(self.df_new_test['Kt_3'].describe())
print('\n')
print(self.df_new_test['Kt_4'].describe())
return rmse_denorm_all, rmse_mean
def write_to_file(self):
self.rmse_denorm_all, self.rmse_mean = self.denormalization()
# Write to file
f = open(self.RESULTS_DIR + '/' + 'results.txt', 'a+')
j=0
for i in self.rmse_denorm_all:
j += 1
f.write("rmse_denorm{}: {}\r\n".format(j, i))
f.write('mean_rmse: {}'.format(self.rmse_mean))
f.close()
# ### Saving train and test losses to a csv
if self.run_train:
df_trainLoss = pd.DataFrame(data={'Train Loss':self.train_loss}, columns=['Train Loss'])
df_trainLoss.head()
testloss_unsqueezed = np.array(self.test_loss).squeeze()
df_testLoss = pd.DataFrame(data=testloss_unsqueezed,columns=['mse1','mse2', 'mse3', 'mse4'])
df_testLoss.head()
df_testLoss.to_csv(self.RESULTS_DIR + '/' + '_TestLoss.csv')
if self.run_train:
df_trainLoss.to_csv(self.RESULTS_DIR + '/' + '_TrainLoss.csv')