-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.sh
1423 lines (1146 loc) · 51.6 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
python train.py --batch-size 5 \
--seed 0 \
--exp-dir single_obj_exp1 \
--warmup-epoch 10 \
--num-cluster 120 \
--moco_r 40 \
--hyp_N 1 \
--mode "node" \
--data "/home/mprabhud/dataset/clevr_lang/npys/aa_5t.txt"
-----------------------------------------------------------------------------------------------------
python train.py --batch-size 5 \
--seed 0 \
--exp-dir two_obj_spatial_without_pretrained \
--epochs 350 \
--warmup-epoch 150 \
--num-cluster 200 \
--moco_r 100 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt"
--use_pretrained
------------------------------------------------------------------------------------------------------
python train.py --batch-size 5 \
--seed 0 \
--exp-dir two_obj_spatial_with_node_pretrained \
--epochs 350 \
--warmup-epoch 150 \
--num-cluster 200 \
--moco_r 100 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar"
---------------------------------------------------------------------------------------------------------
Exp Name: two_obj_spatial_with_scene_and_view_loss_exp1
Mode: Spatial
Pretrained : Nodes
Losses : Scene + View
Number of Scene = 10
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp1 \
--epochs 350 \
--warmup-epoch 150 \
--num-cluster 200 \
--scene_r 20 \
--view_r 65 \
--scene_wt 0.4 \
--view_wt 0.6 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar"
---------------------------------------------------------------------------------------------------------
Exp Name: two_obj_spatial_with_scene_and_view_loss_sans_node_exp2
Mode: Spatial
Pretrained : Nodes
Losses : Scene + View
Number of Scene = 10
Removed Node features from the scene embeddings
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp2 \
--epochs 350 \
--warmup-epoch 120 \
--num-cluster 200 \
--scene_r 20 \
--view_r 65 \
--scene_wt 0.4 \
--view_wt 0.6 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
# --use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar"
--------------------------------------------------------------------------------------------------------------
Exp Name: two_obj_spatial_with_scene_and_view_loss_sans_node_exp3
Mode: Spatial
Pretrained : Nodes
Losses : Scene + View
Number of Scene = 10
Removed Node features from the scene embeddings
Weight of the view loss decreased
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp3 \
--epochs 350 \
--warmup-epoch 120 \
--num-cluster 200 \
--scene_r 20 \
--view_r 65 \
--scene_wt 0.8 \
--view_wt 0.2 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
# --use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar"
--------------------------------------------------------------------------------------------------------------
Exp Name: two_obj_spatial_with_scene_and_view_loss_sans_node_exp4
Mode: Spatial
Pretrained : Nodes
Losses : Scene + View
Number of Scene = 10
Weight of the view loss decreased
Pretrained Node features used
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp4 \
--epochs 350 \
--warmup-epoch 120 \
--num-cluster 200 \
--scene_r 20 \
--view_r 65 \
--scene_wt 0.8 \
--view_wt 0.2 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar"
----------------------------------------------------------------------------------------------------------------
Exp 5
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp5 \
--epochs 350 \
--warmup-epoch 120 \
--num-cluster 200 \
--scene_r 20 \
--view_r 65 \
--scene_wt 0.7 \
--view_wt 0.3 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar"
----------------------------------------------------------------------------------------------------------------
Exp 6
Warmig up the scene model for 70 epochs and then adding the view loss
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp6 \
--epochs 350 \
--warmup-epoch 200 \
--num-cluster 200 \
--scene_r 20 \
--view_r 65 \
--scene_wt 0.2 \
--view_wt 0.8 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar"
-------------------------------------------------------------------------------------------------------------------
Exp 7
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp7 \
--epochs 350 \
--warmup-epoch 120 \
--num-cluster 200 \
--scene_r 20 \
--view_r 65 \
--scene_wt 0.15 \
--view_wt 0.85 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar"
------------------------------------------------------------------------------------------------------------
Exp 8 -- train for longer epochs without introducing PCL loss
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp8 \
--epochs 350 \
--warmup-epoch 350 \
--num-cluster 200 \
--scene_r 20 \
--view_r 65 \
--scene_wt 0.7 \
--view_wt 0.3 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar"
-------------------------------------------------------------------------------------------------------------------
Exp 9 -- train
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp9 \
--epochs 350 \
--warmup-epoch 350 \
--num-cluster 200 \
--scene_r 20 \
--view_r 65 \
--scene_wt 0.15 \
--view_wt 0.85 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar"
-----------------------------------------------------------------------------------
Exp 11
Fresh training after debugging/ Negative embeddings = 2
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp11 \
--epochs 350 \
--warmup-epoch 350 \
--num-cluster 200 \
--scene_r 20 \
--view_r 12 \
--scene_wt 0.5 \
--view_wt 0.5 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar"
--------------------------------------------------------------------------------------
Exp 12
added tb weight histograms
Negative embeddings = 2
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp12 \
--epochs 350 \
--warmup-epoch 350 \
--num-cluster 200 \
--scene_r 20 \
--view_r 12 \
--scene_wt 0.5 \
--view_wt 0.5 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar"
------------------------------------------------------------------------------------
Exp 13
added tb weight histograms
Negative embeddings = 2
Step LR -- decrease LR after every 20 epcochs . Initial LR = 0.03
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp13 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.03 \
--num-cluster 200 \
--scene_r 20 \
--view_r 12 \
--scene_wt 0.5 \
--view_wt 0.5 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 20 40 60 80 100 120 140 \
------------------------------------------------------------------------------------
Exp 14
added tb weight histograms
Negative embeddings = 2
Step LR -- decrease LR after every 20 epcochs . Initial LR = 0.03
Momentum decreased to 0.1 from 0.9
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp14 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.03 \
--num-cluster 200 \
--momentum 0.1 \
--scene_r 20 \
--view_r 12 \
--scene_wt 0.5 \
--view_wt 0.5 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 20 40 60 80 100 120 140 \
------------------------------------------------------------------------------------
Exp 15
added tb weight histograms
Negative embeddings = 2
Step LR -- decrease LR after 200 epchocs
Initial LR - 0.003
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp15 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--momentum 0.1 \
--scene_r 20 \
--view_r 12 \
--scene_wt 0.5 \
--view_wt 0.5 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 200 300 \
------------------------------------------------------------------------------------
Exp 16:
Nullified the negative scene embeddings. Now the Negative: untransformed spatial embeddings
and the Postive: transformed spatial embedding
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp16 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--momentum 0.1 \
--scene_r 20 \
--view_r 6 \
--scene_wt 0.5 \
--view_wt 0.5 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 250 300
=========experiment failed>>>>>>>>>>>
Still the transformation is not working
https://pasteboard.co/JzZwOea.png
---------------------------------------------------------------------------------------
Exp17:
Check if experiment 15 still works
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp17 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--momentum 0.1 \
--scene_r 20 \
--view_r 12 \
--scene_wt 0.5 \
--view_wt 0.5 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 200 300
https://pasteboard.co/JzZxEK8.png
----------------------------------------------------------------------------------------------------
Exp 18 : (replica of exp9). Negative scene embeddings=16
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp18 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--scene_r 20 \
--view_r 70 \
--scene_wt 0.75 \
--view_wt 0.25 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 250 300
---------------------------------------------------------------------------------------
Exp 19 : Trying to replicate exp 12 and check if it works. Here I am try to check if the code reformatting from exp 12 to exp 19 still works and it is able to replicate exacts results
negative embeds = 2
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp19 \
--epochs 350 \
--warmup-epoch 350 \
--num-cluster 200 \
--scene_r 20 \
--view_r 12 \
--scene_wt 0.5 \
--view_wt 0.5 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar"
-------------------------------------------------------------------------------
Exp 20: CHangeing exp 18 . learning rate and weights. Negative embeds =16. Solution of exp 18 is really unstable checking if it works
Negative Embeds : 16
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp20 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.03 \
--num-cluster 200 \
--scene_r 20 \
--view_r 70 \
--scene_wt 0.85 \
--view_wt 0.15 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 250 300
--------------------------------------------------------------------------------------
Exp 21: Changeing the LR from exp 20 to 0.003 and see how it affects the model
Negative Embeds : 16
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp21 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--scene_r 20 \
--view_r 70 \
--scene_wt 0.85 \
--view_wt 0.15 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 250 300
For exp 20 and 21, the solution is really unstable. These experiments are in continuatio of exp 9
where there was no gradient flow in viewpoitn transformation layers
---------------------------------------------------------------------------
Exp 22:
Decreasing the LR to 0.00003 from exp21 and see how it affects the model
Negative Embeds : 16
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp22 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.00003 \
--num-cluster 200 \
--scene_r 20 \
--view_r 70 \
--scene_wt 0.85 \
--view_wt 0.15 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 250 300
------------------------------------------------------------------------------------------------
Exp 23 Only view loss experiment. Trying to judge if I can build up a scenario where I try for the viewpoint transformation
layer purely from the view stand point
Scene Embeddings = 16 + 1 (untransformed one)
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp23 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--scene_r 20 \
--view_r 72 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 250 300
---------------------------------------------------------------------------------------------
Exp 24 Only view loss experiment. Trying to judge if I can build up a scenario where I try for the viewpoint transformation
layer purely from the view stand point
Scene Embeddings = 1 (untransformed one)
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp24 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--scene_r 20 \
--view_r 4 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 250 300
Observation
---------------------------------------------------------------------------------------------------------------
Exp 25 Only view loss experiment. Trying to judge if I can build up a scenario where I try for the viewpoint transformation
layer purely from the view stand point
Nega Scene Embeddings = 1 (transformed one)
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp25 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--scene_r 20 \
--view_r 4 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 250 300
----------------------------------------------------------------------------------------------------------------------------
Exp 26:
Revamped the loss calculation code. No key encoder now for view loss
removed the torch no grad and detach from the queue
Negative Scene Embeddings = 1 (transformed one)
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp26 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--scene_r 20 \
--view_r 4 \
--hyp_N 2 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 250 300
>>>>>>>>>>>>Experiment succesful>>>>>>>>>>>>>>>>>>>
-----------------------------------------------------------------------------------------
Exp 27:
Revamped the loss calculation code. No key encoder now for view loss
removed the torch no grad and detach from the queue
Negative Scene Embeddings = 1 + 16 (transformed one)
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp27 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--scene_r 20 \
--view_r 72 \
--hyp_N 2 \
--K 16 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 250 300
!!!!Experiment failed : you shooud not start with that much set of negative embeddings
---------------------------------------------------------------------------------------------
Exp28
Revamped the loss calculation code. No key encoder now for view loss
removed the torch no grad and detach from the queue
Negative Scene Embeddings = 1 + 4 (untransformed one)
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp28 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--scene_r 20 \
--view_r 24 \
--hyp_N 2 \
--K 4 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 250 300
A lot of False Negative are there
---------------------------------------------------------------------------------------------
Exp29
Revamped the loss calculation code. No key encoder now for view loss
removed the torch no grad and detach from the queue
Negative Scene Embeddings = 1 + 8 (untransformed one)
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp29 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--scene_r 20 \
--view_r 40 \
--hyp_N 2 \
--K 8 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 250 300
--------------------------------------------------------------------------------------------------
Exp30
Revamped the loss calculation code. No key encoder now for view loss
removed the torch no grad and detach from the queue
Negative Scene Embeddings = 1 + 8 (untransformed one)
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp30 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--scene_r 20 \
--view_r 40 \
--hyp_N 2 \
--K 8 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 250 300
-------------------------------------------------------------------------------------------
Exp 31
Revamped the loss calculation code. No key encoder now for view loss
removed the torch no grad and detach from the queue_view
Negative Scene Embeddings = 1 + 8 (untransformed one)
Increase the learning rate to 0.03
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp31 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.03 \
--num-cluster 200 \
--scene_r 20 \
--view_r 40 \
--hyp_N 2 \
--K 8 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--schedule 201 350
>>>>>>>>>>>>>>>>>>> This LR aint working >>> CHoose 0.003
-------------------------------------------------------------------------------------------
Exp 32:
Riding on the success of the exp 30 which was about only the view loss, now adding the scene loss also
removed the torch no grad and detach from the queue_view
Negative Scene Embeddings = 1 + 8 (untransformed one)
l_neg = torch.einsum('nc,ck->nk', [q, self.queue_scene.clone().detach()])
self._dequeue_and_enqueue_scene(k_t.clone().detach())
self._dequeue_and_enqueue_scene(k_o.clone().detach())
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp32 \
--epochs 500 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--scene_r 50 \
--view_r 40 \
--hyp_N 2 \
--K 8 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--scene_wt 0.5 \
--view_wt 0.5 \
--schedule 250 400
-------------------------------------------------------------------------------------------------------
Exp 33:
Riding on the success of the exp 30 which was about only the view loss, now adding the scene loss also
removed the torch no grad and detach from the queue_view
Negative Scene Embeddings = 1 + 8 (untransformed one)
Just a variation of Exp32.
self._dequeue_and_enqueue_scene(k_t)
self._dequeue_and_enqueue_scene(k_o)
l_neg = torch.einsum('nc,ck->nk', [q, self.queue_scene.clone().detach()])
@torch.no_grad to queue_scene
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp33 \
--epochs 500 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--scene_r 50 \
--view_r 40 \
--hyp_N 2 \
--K 8 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--scene_wt 0.5 \
--view_wt 0.5 \
--schedule 250 400
-------------------------------------------------------------------------------------------------------------------
Exp 34
Riding on the success of the exp 30 which was about only the view loss, now adding the scene loss also
removed the torch no grad and detach from the queue_view
Negative Scene Embeddings = 1 + 8 (untransformed one)
l_neg = torch.einsum('nc,ck->nk', [q, self.queue_scene.clone().detach()])
self._dequeue_and_enqueue_scene(k_t.clone().detach())
self._dequeue_and_enqueue_scene(k_o.clone().detach())
full retraining of the encoder and scene graph -- torch no grad removed
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp34 \
--epochs 500 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--scene_r 50 \
--view_r 40 \
--hyp_N 2 \
--K 8 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--scene_wt 0.5 \
--view_wt 0.5 \
--schedule 250 400
-------------------------------------------------------------------------------------------------------------------
Exp 35
Riding on the success of the exp 30 which was about only the view loss, now adding the scene loss also
removed the torch no grad and detach from the queue_view
Negative Scene Embeddings = 1 + 8 (untransformed one)
l_neg = torch.einsum('nc,ck->nk', [q, self.queue_scene.clone().detach()])
self._dequeue_and_enqueue_scene(k_t.clone().detach())
self._dequeue_and_enqueue_scene(k_o.clone().detach())
full retraining of the encoder and scene graph -- torch no grad removed
self._dequeue_and_enqueue_scene(k_t.clone().detach()) ---removed
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp35 \
--epochs 500 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--scene_r 26 \
--view_r 40 \
--hyp_N 2 \
--K 8 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--scene_wt 0.5 \
--view_wt 0.5 \
--schedule 250 400
-------------------------------------------------------------------------------------------
Exp 35-2: Training on 10 scenes
Riding on the success of the exp 30 which was about only the view loss, now adding the scene loss also
removed the torch no grad and detach from the queue_view
Negative Scene Embeddings = 1 + 16 (untransformed one)
Just a variation of Exp33.
removed ----> self._dequeue_and_enqueue_scene(k_t)
configure ---->
self._dequeue_and_enqueue_scene(k_o)
l_neg = torch.einsum('nc,ck->nk', [q, self.queue_scene.clone().detach()])
@torch.no_grad to queue_scene
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp35_2 \
--epochs 350 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--scene_r 26 \
--view_r 40 \
--hyp_N 2 \
--K 8 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--scene_wt 0.5 \
--view_wt 0.5 \
--schedule 250 400
-------------------------------------------------------------------------------------------------------------------
Exp 36 - Full dataset training
Riding on the success of the exp 30 which was about only the view loss, now adding the scene loss also
removed the torch no grad and detach from the queue_view
Negative Scene Embeddings = 1 + 16 (untransformed one)
l_neg = torch.einsum('nc,ck->nk', [q, self.queue_scene.clone().detach()])
self._dequeue_and_enqueue_scene(k_t.clone().detach())
self._dequeue_and_enqueue_scene(k_o.clone().detach())
full retraining of the encoder and scene graph -- torch no grad removed
self._dequeue_and_enqueue_scene(k_t.clone().detach()) ---removed
Full dataset training with scene_r = 60 (15)
--> screen 3
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp36 \
--epochs 500 \
--warmup-epoch 500 \
--lr 0.003 \
--num-cluster 200 \
--scene_r 60 \
--view_r 40 \
--hyp_N 2 \
--K 8 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--scene_wt 0.5 \
--view_wt 0.5 \
--schedule 300 450
-----------------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------------
Bug spotted .. experiment 35, 35_2 and 36 needs to be repeated now
----------------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------------------------------
Exp 37
--> extension of exp 34 with more views_r and checking if training stablizes
--> model file of exp34
--> screen 4
python train.py --batch-size 1 \
--seed 0 \
--exp-dir two_obj_spatial_with_scene_and_view_loss_exp37 \
--epochs 500 \
--warmup-epoch 350 \
--lr 0.003 \
--num-cluster 200 \
--scene_r 50 \
--view_r 72 \
--hyp_N 2 \
--K 8 \
--mode "spatial" \
--data "/home/mprabhud/dataset/clevr_lang/npys/ab_5t.txt" \
--use_pretrained "tb_logs/single_obj_exp1/checkpoint.pth.tar" \
--scene_wt 0.5 \
--view_wt 0.5 \
--schedule 250 400
------------------------------------------------------------------------------------------------------------------------------------------------------------------
Exp 38