-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinitial_env.py
127 lines (85 loc) · 4.24 KB
/
initial_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import numpy as np
import pandas as pd
import requests
pd.options.display.float_format = '{:.2f}'.format
from utils import preety_print_model_ratings, initialize_vh_vo
from tqdm import tqdm
import json
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--classifier', action='store_true')
args = parser.parse_args()
# Load the JSON data from the local file
if not os.path.exists('data/local_file_name.json'):
url = "https://storage.googleapis.com/arena_external_data/public/clean_battle_20240814_public.json"
response = requests.get(url)
os.makedirs('data', exist_ok=True)
with open('data/local_file_name.json', 'wb') as file:
file.write(response.content)
with open('data/local_file_name.json', 'r') as file:
battles = pd.read_json(file).sort_values(ascending=True, by=["tstamp"])
# Filter targeted battles
battles = battles[battles["anony"] == True]
# battles = battles[battles["language"] == 'English']
print("Before dedup: ", len(battles))
battles = battles[battles["dedup_tag"].apply(lambda x: x.get("sampled", False))]
print("After dedup: ", len(battles))
battles = battles.sort_values(ascending=True, by=["tstamp"])
if args.classifier:
model_name_classifier = ['llama-2-7b-chat', 'llama-2-13b-chat', 'llama-3-8b-instruct', 'command-r', 'gpt-4o-mini-2024-07-18',\
'mistral-7b-instruct-v0.2', 'mistral-7b-instruct', 'gemma-2-27b-it', 'gemma-2b-it', 'gemma-2-9b-it', \
'qwen1.5-7b-chat', 'qwen1.5-14b-chat', 'starling-lm-7b-alpha', 'starling-lm-7b-beta', 'yi-34b-chat','yi-1.5-34b-chat',\
'chatglm3-6b', 'zephyr-7b-beta', 'zephyr-7b-alpha', 'phi-3-small-8k-instruct', \
'vicuna-7b', 'mpt-7b-chat', 'openchat-3.5', 'wizardlm-13b', 'solar-10.7b-instruct-v1.0']
battles = battles[battles["language"] == 'English']
battle_list = []
for model_id in model_name_classifier:
battle_list.append(battles[battles["model_a"] == model_id])
battles = pd.concat(battle_list)
battle_list = []
for model_id in model_name_classifier:
battle_list.append(battles[battles["model_b"] == model_id])
battles = pd.concat(battle_list)
model_name_sorted = []
for model in battles["model_a"]:
if model not in model_name_sorted:
model_name_sorted.append(model)
model_name_sorted = sorted(model_name_sorted)
battle_all_list = []
for idx, key in tqdm(enumerate(battles['model_a'].keys())):
model_a = battles.loc[key, 'model_a']
model_b = battles.loc[key, 'model_b']
winner = battles.loc[key, 'winner']
tokens_a = battles.loc[key, 'conv_metadata']['sum_assistant_a_tokens']
tokens_b = battles.loc[key, 'conv_metadata']['sum_assistant_b_tokens']
battle_all_list.append({'model_a':model_a, 'model_b':model_b, 'winner':winner, 'tokens_a':tokens_a, 'tokens_b':tokens_b})
battle_vo_list = []
battle_vh_list = []
index_list = np.random.choice([x for x in range(len(battle_all_list))], int(0.9*len(battle_all_list)), replace=False)
for idx in range(len(battle_all_list)):
if idx not in index_list:
battle_vo_list.append(battle_all_list[idx])
else:
battle_vh_list.append(battle_all_list[idx])
print(len(battle_vo_list))
print(len(battle_vh_list))
battle_vo_dict = {}
for idx,item in enumerate(battle_vo_list):
battle_vo_dict[idx] = {'model_a':item['model_a'], 'model_b':item['model_b'], 'winner':item['winner'],'tokens_a':tokens_a, 'tokens_b':tokens_b}
battle_vh_dict = {}
for idx,item in enumerate(battle_vh_list):
battle_vh_dict[idx] = {'model_a':item['model_a'], 'model_b':item['model_b'], 'winner':item['winner'],'tokens_a':tokens_a, 'tokens_b':tokens_b}
if args.classifier:
with open(f'data/vo_classifier.json', 'w') as f:
json.dump(battle_vo_dict, f, indent=4)
with open(f'data/vh_classifier.json', 'w') as f:
json.dump(battle_vh_dict, f, indent=4)
else:
with open(f'data/vo.json', 'w') as f:
json.dump(battle_vo_dict, f, indent=4)
with open(f'data/vh.json', 'w') as f:
json.dump(battle_vh_dict, f, indent=4)
elo_ratings, _ = initialize_vh_vo(model_name_sorted, battle_vh_list,classifier=args.classifier)
initial_ranking = preety_print_model_ratings(elo_ratings)
print(initial_ranking)