@@ -145,7 +145,7 @@ cpdef find_product_decomposition(int k,int n):
145
145
sage: _ = f( * args)
146
146
"""
147
147
cdef int n1,n2
148
- for n1 in range (2 ,n):
148
+ for n1 in range (2 , n):
149
149
n2 = n/ n1 # n2 is decreasing along the loop
150
150
if n2 < n1:
151
151
break
@@ -194,15 +194,13 @@ cpdef find_wilson_decomposition_with_one_truncated_group(int k,int n):
194
194
if u == 0 or (u> 1 and k >= u+ 2 ):
195
195
continue
196
196
197
- m = n/ r
197
+ m = n // r
198
198
# If there exists a TD(k,m) then k<m+2
199
199
if k >= m+ 2 :
200
200
break
201
201
202
- if (is_available(k ,m ) and
203
- is_available(k ,m+ 1 ) and
204
- is_available(k+ 1 ,r ) and
205
- is_available(k ,u )):
202
+ if (is_available(k, m) and is_available(k, m + 1 ) and
203
+ is_available(k + 1 , r) and is_available(k, u)):
206
204
from sage.combinat.designs.orthogonal_arrays import wilson_construction
207
205
return wilson_construction, (None ,k,r,m,(u,),False )
208
206
@@ -294,22 +292,20 @@ cpdef find_construction_3_3(int k,int n):
294
292
sage: find_construction_3_3( 12,11)
295
293
"""
296
294
cdef int mm,nn,i
297
- for mm in range (k- 1 ,n/ 2 + 1 ):
298
- if (not is_available(k ,mm ) or
299
- not is_available(k ,mm+ 1 )):
295
+ for mm in range (k- 1 , n// 2 + 1 ):
296
+ if not (is_available(k, mm) and is_available(k, mm + 1 )):
300
297
continue
301
298
302
- for nn in range (2 ,n / mm+ 1 ):
299
+ for nn in range (2 , n / / mm+ 1 ):
303
300
i = n- nn* mm
304
- if i<= 0 :
301
+ if i <= 0 :
305
302
continue
306
303
307
- if (is_available(k+ i, nn ) and
308
- is_available(k , mm+ i)):
304
+ if is_available(k + i, nn) and is_available(k, mm + i):
309
305
from sage.combinat.designs.orthogonal_arrays_build_recursive import construction_3_3
310
- return construction_3_3, (k,nn,mm,i)
306
+ return construction_3_3, (k, nn, mm, i)
311
307
312
- cpdef find_construction_3_4(int k,int n):
308
+ cpdef find_construction_3_4(int k, int n):
313
309
r """
314
310
Find a decomposition for construction 3. 4 from [AC07 ]_.
315
311
@@ -339,20 +335,20 @@ cpdef find_construction_3_4(int k,int n):
339
335
not is_available(k,mm+ 2 )):
340
336
continue
341
337
342
- for nn in range (2 ,n / mm+ 1 ):
338
+ for nn in range (2 , n / / mm+ 1 ):
343
339
i = n- nn* mm
344
340
if i<= 0 :
345
341
continue
346
342
347
343
for s in range (1 ,min (i,nn)):
348
344
r = i- s
349
- if (is_available(k+ r + 1 , nn) and
350
- is_available(k , s) and
351
- (is_available(k,mm + r) or is_available(k,mm + r + 1 ))):
345
+ if (is_available(k + r + 1 , nn) and
346
+ is_available(k, s) and
347
+ (is_available(k, mm + r) or is_available(k, mm + r + 1 ))):
352
348
from sage.combinat.designs.orthogonal_arrays_build_recursive import construction_3_4
353
- return construction_3_4, (k,nn,mm,r, s)
349
+ return construction_3_4, (k, nn, mm, r, s)
354
350
355
- cpdef find_construction_3_5(int k,int n):
351
+ cpdef find_construction_3_5(int k, int n):
356
352
r """
357
353
Find a decomposition for construction 3. 5 from [AC07 ]_.
358
354
@@ -376,14 +372,14 @@ cpdef find_construction_3_5(int k,int n):
376
372
sage: find_construction_3_5( 9,24)
377
373
"""
378
374
cdef int mm,i,nn,r,s,t
379
- for mm in range (2 ,n / 2 + 1 ):
375
+ for mm in range (2 , n / /2 + 1 ):
380
376
if (mm+ 3 >= n or
381
377
not is_available(k,mm+ 1 ) or
382
378
not is_available(k,mm+ 2 ) or
383
379
not is_available(k,mm+ 3 )):
384
380
continue
385
381
386
- for nn in range (2 ,n / mm+ 1 ):
382
+ for nn in range (2 , n / / mm+ 1 ):
387
383
i = n- nn* mm
388
384
if i<= 0 :
389
385
continue
@@ -433,7 +429,7 @@ cpdef find_construction_3_6(int k,int n):
433
429
not is_available(k,mm+ 2 )):
434
430
continue
435
431
436
- for nn in range (2 ,n / mm+ 1 ):
432
+ for nn in range (2 , n / / mm+ 1 ):
437
433
i = n- nn* mm
438
434
if i<= 0 :
439
435
continue
@@ -913,7 +909,7 @@ cpdef find_brouwer_van_rees_with_one_truncated_column(int k,int n):
913
909
cdef tuple values
914
910
915
911
# We write n=rm+remainder
916
- for m in range (2 ,n// 2 ):
912
+ for m in range (2 , n// 2 ):
917
913
if not is_available(k,m):
918
914
continue
919
915
@@ -935,7 +931,7 @@ cpdef find_brouwer_van_rees_with_one_truncated_column(int k,int n):
935
931
continue
936
932
937
933
max_multiplier = max (available_multipliers)
938
- for r in range (2 ,n// m+ 1 ):
934
+ for r in range (2 , n// m+ 1 ):
939
935
remainder = n- r* m
940
936
if (remainder > r* max_multiplier or
941
937
not is_available(k+ 1 ,r) or
0 commit comments