@@ -2485,6 +2485,118 @@ def conjugate(self):
2485
2485
par = Partitions_n (sum (self ))
2486
2486
return par .element_class (par , conjugate (self ))
2487
2487
2488
+ def glaisher_franklin (self , s ):
2489
+ r"""
2490
+ Apply the Glaisher-Franklin bijection to ``self``.
2491
+
2492
+ The Franklin-Glaisher bijection, with parameter `s`, returns
2493
+ a partition whose set of parts that are repeated at least `s`
2494
+ times equals the set of parts divisible by `s` in ``self``,
2495
+ after dividing each part by `s`.
2496
+
2497
+ INPUT:
2498
+
2499
+ - ``s`` -- positive integer
2500
+
2501
+ EXAMPLES::
2502
+
2503
+ sage: Partition([4, 3, 2, 2, 1]).glaisher_franklin(2)
2504
+ [3, 2, 2, 1, 1, 1, 1, 1]
2505
+
2506
+ TESTS:
2507
+
2508
+ The map preserves the size::
2509
+
2510
+ sage: all(mu.glaisher_franklin(s).size() == n
2511
+ ....: for n in range(20) for mu in Partitions(n)
2512
+ ....: for s in range(1, 5))
2513
+ True
2514
+
2515
+ The map is bijective::
2516
+
2517
+ sage: l = [[mu.glaisher_franklin(s)
2518
+ ....: for n in range(20) for mu in Partitions(n)]
2519
+ ....: for s in range(1, 5)]
2520
+ sage: all(len(set(ls)) == len(ls) for ls in l)
2521
+ True
2522
+
2523
+ The map transports the statistics::
2524
+
2525
+ sage: d = lambda la, s: set(p / s for p in la if p % s == 0)
2526
+ sage: r = lambda la, s: set(p for p in la if list(la).count(p) >= s)
2527
+ sage: all(d(mu, s) == r(mu.glaisher_franklin(s), s)
2528
+ ....: for n in range(20) for mu in Partitions(n)
2529
+ ....: for s in range(1, 5))
2530
+ True
2531
+
2532
+ For `s=2`, the map is known to findstat::
2533
+
2534
+ sage: findmap(Partitions, lambda mu: mu.glaisher_franklin(2)) # optional - internet
2535
+ 0: Mp00312 (quality [100])
2536
+ """
2537
+ s = ZZ (s )
2538
+ if s .is_one ():
2539
+ return self
2540
+ mu = []
2541
+ for p , m in enumerate (self .to_exp (), 1 ):
2542
+ if not p % s :
2543
+ mu .extend ([p // s ] * (m * s ))
2544
+ else :
2545
+ for i , v in enumerate (m .digits (s )):
2546
+ mu .extend ([p * s ** i ]* v )
2547
+
2548
+ P = self .parent ()
2549
+ return P .element_class (P , sorted (mu , reverse = True ))
2550
+
2551
+ def glaisher_franklin_inverse (self , s ):
2552
+ r"""
2553
+ Apply the inverse of the Glaisher-Franklin bijection to ``self``.
2554
+
2555
+ The inverse of the Franklin-Glaisher bijection, with
2556
+ parameter `s`, returns a partition whose set of parts that
2557
+ are divisible by `s`, after dividing each by `s`, equals the
2558
+ equals the set of parts repeated at least `s` times in
2559
+ ``self``.
2560
+
2561
+ INPUT:
2562
+
2563
+ - ``s`` -- positive integer
2564
+
2565
+ EXAMPLES::
2566
+
2567
+ sage: Partition([4, 3, 2, 2, 1]).glaisher_franklin(2)
2568
+ [3, 2, 2, 1, 1, 1, 1, 1]
2569
+ sage: Partition([3, 2, 2, 1, 1, 1, 1, 1]).glaisher_franklin_inverse(2)
2570
+ [4, 3, 2, 2, 1]
2571
+
2572
+ TESTS:
2573
+
2574
+ The map is inverse to :meth:`glaisher_franklin`::
2575
+
2576
+ sage: all(mu.glaisher_franklin(s).glaisher_franklin_inverse(s) == mu
2577
+ ....: and mu.glaisher_franklin_inverse(s).glaisher_franklin(s) == mu
2578
+ ....: for n in range(20) for mu in Partitions(n)
2579
+ ....: for s in range(1, 5))
2580
+ True
2581
+
2582
+ For `s=2`, the map is known to findstat::
2583
+
2584
+ sage: findmap(Partitions, lambda mu: mu.glaisher_franklin_inverse(2)) # optional - internet
2585
+ 0: Mp00313 (quality [100])
2586
+ """
2587
+ s = ZZ (s )
2588
+ if s .is_one ():
2589
+ return self
2590
+ mu = []
2591
+ for p , m in enumerate (self .to_exp (), 1 ):
2592
+ p = ZZ (p )
2593
+ mu .extend ([p * s ] * (m // s ))
2594
+ m1 , p1 = p .val_unit (s )
2595
+ mu .extend ([p1 ] * ((m % s ) * s ** m1 ))
2596
+
2597
+ P = self .parent ()
2598
+ return P .element_class (P , sorted (mu , reverse = True ))
2599
+
2488
2600
def suter_diagonal_slide (self , n , exp = 1 ):
2489
2601
r"""
2490
2602
Return the image of ``self`` in `Y_n` under Suter's diagonal slide
0 commit comments