-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimple_diversity.py
159 lines (144 loc) · 6.65 KB
/
simple_diversity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
"""
A minimal working example that shows how a diversity mixin would work.
In principle:
1.) Get a solution
2.) Define a boolean decision variable for every variable we care about
Tie it to x[i] != x_old[i]
3.) Set "maximize differences" as objective
4.) Solve
"""
import logging
from os import listdir
from os.path import isfile, join
import os
import pickle
import numpy as np
import iterative_copeland as ic
logging.basicConfig(filename="minizinc-python.log", level=logging.DEBUG)
from minizinc import Instance, Model, Result, Solver, Status
def generatePreferenceProfile(model, datafile):
model_file = "./models/"+model+"/"+model+".mzn"
print(model_file)
m = Model(model_file) # "./models/photo_placement.mzn"
# Find the MiniZinc solver configuration for Gecode
gecode = Solver.lookup("chuffed")
# Create an Instance of the n-Queens model for Gecode
instance = Instance(gecode, m)
instance.add_file("./models/" + model + "/data/" + datafile + ".dzn")
save_at = model+"_profiles/"
if not os.path.exists(save_at):
os.makedirs(save_at)
try:
# Find and print all intermediate solutions
print("Normal traversal")
with instance.branch() as inst:
inst["old_solutions"] = []
inst.add_string("solve satisfy;")
result = inst.solve(all_solutions=True)
all_sol_pool = []
pref_profile = []
for i in range(len(result)):
all_sol_pool.append(result[i, "diversity_variables_of_interest"])
pref_profile.append(result[i, "util_per_agent"])
score_list = ic.pairwiseScoreCalcListFull(pref_profile, len(pref_profile), len(pref_profile[0]))
true_copeland_score = ic.copelandScoreFull(score_list, len(pref_profile), len(pref_profile[0]))
with open(save_at+ 'normal'+datafile+'.vt', 'wb') as f:
pickle.dump(np.array(all_sol_pool), f)
pickle.dump(np.array(pref_profile), f)
pickle.dump(true_copeland_score, f)
print("all_sol_pool", len(all_sol_pool))
print("pref_profile", len(pref_profile))
except Exception as e:
print("❌ FAILED ❌")
print(e)
return None
try:
# Inverted traversal of solutions
print("Inverted traversal")
with instance.branch() as inst:
inst["old_solutions"] = []
inst.add_string("solve :: int_search(diversity_variables_of_interest, input_order, indomain_max, complete) satisfy;")
result = inst.solve(all_solutions=True)
all_sol_pool = []
pref_profile = []
for i in range(len(result)):
all_sol_pool.append(result[i, "diversity_variables_of_interest"])
pref_profile.append(result[i, "util_per_agent"])
with open(save_at + 'inverted'+datafile+'.vt', 'wb') as f:
pickle.dump(np.array(all_sol_pool), f)
pickle.dump(np.array(pref_profile), f)
print("all_sol_pool", len(all_sol_pool))
print("pref_profile", len(pref_profile))
except Exception as e:
print("❌ FAILED ❌")
print(e)
return None
try:
# Random traversal of solutions
print("Random traversal")
with instance.branch() as inst:
inst["old_solutions"] = []
# inst.add_string("solve :: int_search(util_per_agent, input_order, indomain_random, complete) satisfy;")
inst.add_string("solve :: int_search(diversity_variables_of_interest, input_order, indomain_random, complete) satisfy;")
result = inst.solve(all_solutions=True)
all_sol_pool = []
pref_profile = []
for i in range(len(result)):
all_sol_pool.append(result[i, "diversity_variables_of_interest"])
pref_profile.append(result[i, "util_per_agent"])
with open(save_at+'random'+datafile+'.vt', 'wb') as f:
pickle.dump(np.array(all_sol_pool), f)
pickle.dump(np.array(pref_profile), f)
print("all_sol_pool", len(all_sol_pool))
print("pref_profile", len(pref_profile))
except Exception as e:
print("❌ FAILED ❌")
print(e)
return None
# try:
# # Maximizing diversity of solutions
# print("Diversity maximization")
# # this is tied to what we have in the "simple_diversity_mixin.py"
# variables_of_interest_key : str = "diversity_variables_of_interest"
# # we'll need a solution pool of previously seen solutions
# # to rule out condorcet cycles; a solution is stored as a Python dictionary from variable to value
# solution_pool = []
# all_sol_pool = []
# pref_profile = []
# search_more : bool = True
# no_solutions = 0
# # if model == "project_assignment":
# # return None
# while search_more:
# with instance.branch() as inst:
# if solution_pool: # once we have solutions, it makes sense to maximize diversity
# inst.add_string("solve maximize diversity_abs;")
# else:
# inst.add_string("solve satisfy;")
# inst["old_solutions"] = solution_pool
# res = inst.solve()
# if res.solution is not None:
# # print(res["util_per_agent"])
# all_sol_pool.append(res["diversity_variables_of_interest"])
# pref_profile.append(res["util_per_agent"])
# search_more = res.status in {Status.SATISFIED, Status.ALL_SOLUTIONS, Status.OPTIMAL_SOLUTION}
# if search_more:
# next_sol_vars = res[variables_of_interest_key] # copy the current solution variables
# solution_pool += next_sol_vars
# with open(save_at+'search_more'+datafile+'.vt', 'wb') as f:
# pickle.dump(np.array(all_sol_pool), f)
# pickle.dump(np.array(pref_profile), f)
# except Exception as e:
# print("❌ FAILED ❌")
# print(e)
# return None
if __name__ == "__main__":
benchmarks = ["photo_placement_bipolar", "vehicle_routing", "scheduling", ] #, "photo_placement_bipolar", "scheduling", "vehicle_routing"
benchmarks = ["scheduling"]
for benchmark in benchmarks:
directory = "./models/"+benchmark+"/data"
datafiles = [f[:-4] for f in listdir(directory) if isfile(join(directory, f))]
print(datafiles)
for datafile in datafiles:
print(datafile)
generatePreferenceProfile(benchmark, datafile)