-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathask.py
172 lines (143 loc) · 5.31 KB
/
ask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import nltk
import sys
import os
import string
import math
FILE_MATCHES = 5
SENTENCE_MATCHES = 3
def main():
# Check command-line arguments
if len(sys.argv) != 2:
sys.exit("Usage: python questions.py corpus")
# Calculate IDF values across files
files = load_files(sys.argv[1])
file_words = {
filename: tokenize(files[filename])
for filename in files
}
file_idfs = compute_idfs(file_words)
while True:
# Prompt user for query
query = set(tokenize(input("Ask>>> ")))
if "exit" in query:
sys.exit()
# Determine top file matches according to TF-IDF
filenames = top_files(query, file_words, file_idfs, n=FILE_MATCHES)
# Extract sentences from top files
sentences = dict()
for filename in filenames:
for passage in files[filename].split("\n"):
for sentence in nltk.sent_tokenize(passage):
tokens = tokenize(sentence)
if tokens:
sentences[sentence] = tokens
# Compute IDF values across sentences
idfs = compute_idfs(sentences)
# Determine top sentence matches
matches = top_sentences(query, sentences, idfs, n=SENTENCE_MATCHES)
print("Best Match Answers:")
for i, match in enumerate(matches):
print(f"{i+1}. {match}")
print()
def load_files(directory):
"""
Given a directory name, return a dictionary mapping the filename of each
`.txt` file inside that directory to the file's contents as a string.
"""
files = dict()
filenames = os.listdir(directory)
for filename in filenames:
with open(os.path.join(directory, filename)) as text_file:
files[filename] = "\n".join(text_file.readlines())
return files
def tokenize(document):
"""
Given a document (represented as a string), return a list of all of the
words in that document, in order.
Process document by coverting all words to lowercase, and removing any
punctuation or English stopwords.
"""
words = list()
stop_words = nltk.corpus.stopwords.words("english")
punctuations = string.punctuation
for token in nltk.word_tokenize(document):
# Filter stop words
if token.lower() in stop_words:
continue
# Filter words in which punctuation is present
valid = True
for mark in punctuations:
if mark in token:
valid = False
if not valid:
continue
# Lower the case and append
words.append(token.lower())
return words
def compute_idfs(documents):
"""
Given a dictionary of `documents` that maps names of documents to a list
of words, return a dictionary that maps words to their IDF values.
Any word that appears in at least one of the documents should be in the
resulting dictionary.
"""
# Organize data in sets, for faster operations onwards
words = set()
doc_words = list()
for document in documents:
cur_words = set(documents[document])
doc_words.append(cur_words)
words.update(cur_words)
# Calculate Inverse Document frequency of each word
# i.e prioritizing unique words
idfs = dict()
n_docs = len(documents)
for word in words:
n_docs_have_word = 0
for doc_word in doc_words:
if word in doc_word:
n_docs_have_word += 1
idfs[word] = math.log(n_docs / n_docs_have_word)
return idfs
def top_files(query, files, idfs, n):
"""
Given a `query` (a set of words), `files` (a dictionary mapping names of
files to a list of their words), and `idfs` (a dictionary mapping words
to their IDF values), return a list of the filenames of the the `n` top
files that match the query, ranked according to tf-idf.
"""
# Calculate key for sorting
ranking = {filename: 0 for filename in files}
for raw_word in query:
word = raw_word.lower()
if word in idfs:
for filename in files:
freq_word = files[filename].count(word)
ranking[filename] += freq_word * idfs[word]
# Rank the document based on keys
ranking = sorted(ranking, key=lambda x: ranking[x], reverse=True)
return ranking[:n]
def top_sentences(query, sentences, idfs, n):
"""
Given a `query` (a set of words), `sentences` (a dictionary mapping
sentences to a list of their words), and `idfs` (a dictionary mapping words
to their IDF values), return a list of the `n` top sentences that match
the query, ranked according to idf. If there are ties, preference should
be given to sentences that have a higher query term density.
"""
# Calculate keys for sorting
ranking = {sentence: 0 for sentence in sentences}
density = {sentence: 0 for sentence in sentences}
for sentence in sentences:
word_freq = 0
for word in sentences[sentence]:
if word in query:
ranking[sentence] += idfs[word]
word_freq += 1
density[sentence] = word_freq / len(sentences[sentence])
# Rank the sentence based on keys
final_ranking = sorted(ranking, key=lambda x: (
ranking[x], density[x]*len(x)), reverse=True)
return final_ranking[:n]
if __name__ == "__main__":
main()