-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathenergy_model.py
387 lines (326 loc) · 18.1 KB
/
energy_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import argparse
import csv
import datetime
import pickle
import numpy as np
from scipy.special import softmax
from sklearn.metrics import confusion_matrix, accuracy_score, balanced_accuracy_score, cohen_kappa_score, \
classification_report
import os.path
def print_matrix(text, matrix):
print(text)
for i in range(len(matrix)):
for j in range(len(matrix[0])):
print("{:.2f} ".format(matrix[i][j]), end="")
print()
# 1. Determine transition probabilities between stages
def find_transition_prob(data):
unique, counts = np.unique(data, return_counts=True)
print("Unique values {} of labels {}".format(counts, unique))
data_prev = data[:-1]
data_next = data[1:]
n_labels = len(unique)
trans_prob = np.zeros((n_labels, n_labels))
for label in unique:
transitions = data_next[np.where(data_prev == label)]
trans_count = np.bincount(transitions)
trans_prob[label] = np.append(trans_count, np.zeros(n_labels - len(trans_count)))
trans_prob[label] /= np.sum(trans_prob[label])
return trans_prob
# 2. Finds the energy of the state of each epoch in the hypnogram.
# The energy depends on the probability of each state, as defined in the paper.
def find_energy_state_vec(alpha, conf_real_pred, e_pred, e_trans, pred, pred_opt, trans_prob, pred_prob):
error_t1 = np.zeros(len(pred))
error_t2 = np.zeros(len(pred))
error_pc = np.zeros(len(pred))
error_pr = np.zeros(len(pred))
for i in range(len(pred)):
state = pred_opt[i]
# Probability for each state transition from state series in the training set
if i > 0:
p_trans = trans_prob[pred_opt[i - 1]][state]
error_t1[i] = (1 + e_trans) / (p_trans + e_trans) - 1
if i < len(pred) - 1:
p_trans = trans_prob[state][pred_opt[i + 1]]
error_t2[i] = (1 + e_trans) / (p_trans + e_trans) - 1
# Probability for each state from the confusion matrices from the validation set
p_pred = conf_real_pred[state][pred[i]]
error_pc[i] = (1 + e_pred) / (p_pred + e_pred) - 1
# Probability for each state from the NN predictions for the state
p_out = pred_prob[i][state]
error_pr[i] = (1 + e_pred) / (p_out + e_pred) - 1
energy_vec = alpha[0] * (error_t1 + error_t2) + alpha[1] * (error_pc + error_pr)
return energy_vec
# 3. Finds the changes in energy of the state of a single epoch
def find_delta_energy(curr_energy, alpha, conf_real_pred, e_pred, e_trans, i,
pred, pred_opt, state, trans_prob, pred_prob):
# Probability for each state transition from state series in the training set
error_t, error_t2 = 0, 0
if i > 0:
p_trans = trans_prob[pred_opt[i - 1]][state]
error_t = (1 + e_trans) / (p_trans + e_trans) - 1
if i < len(pred) - 1:
p_trans = trans_prob[state][pred_opt[i + 1]]
error_t2 = (1 + e_trans) / (p_trans + e_trans) - 1
# Probability for each state from the confusion matrices from the validation set
p_pred = conf_real_pred[state][pred[i]]
error_p1 = (1 + e_pred) / (p_pred + e_pred) - 1
# Probability for each state from the NN predictions for the state
p_out = pred_prob[i][state]
error_p2 = (1 + e_pred) / (p_out + e_pred) - 1
delta = np.array([0, 0, 0])
delta[1] = alpha[0] * (error_t + error_t2) + alpha[1] * (error_p1 + error_p2) - curr_energy
# Evaluate the energy change of previous and next positions
if i > 0:
p_transP = trans_prob[pred_opt[i - 1]][pred_opt[i]]
p_transN = trans_prob[pred_opt[i - 1]][state]
delta[0] = alpha[0]*((1 + e_trans) / (p_transN + e_trans) - (1 + e_trans) / (p_transP + e_trans))
if i < len(pred) - 1:
p_transP = trans_prob[pred_opt[i]][pred_opt[i+1]]
p_transN = trans_prob[state][pred_opt[i+1]]
delta[2] = alpha[0]*((1 + e_trans) / (p_transN + e_trans) - (1 + e_trans) / (p_transP + e_trans))
return delta
# 4. Optimize sleep series using the energy function
# trans_prob: transition probability [prev_state][next_state]
# conf_real_pred: confusion matrix [real][pred]
def optimize_energy(trans_prob, conf_real_pred, pred, pred_prob, target, betas,
e_trans=0.1, e_pred=0.1, alpha=None, n_steps=100):
if alpha is None:
alpha = [1.0, 1.0]
n_states = len(trans_prob)
pred_opt = pred.copy()
# Finds the error for each position
energy_list = find_energy_state_vec(alpha, conf_real_pred, e_pred, e_trans, pred, pred_opt, trans_prob, pred_prob)
# Changes one position on each step
for step in range(n_steps):
if step > 0 and step % 1000 == 0 and len(target) == len(pred_opt):
print("Step {:5} Accuracy: {:.2f}%".format(step,
100 * len(np.equal(target, pred_opt).nonzero()[0]) / len(
target)))
# Select position to update. Selection probability is proportional to position energy
pos = np.random.choice(len(energy_list), 1, p=softmax(betas[step] * energy_list))[0]
# Select the state of the selected position. Next states with less energy are more likely to be selected
delta_energy = [] # np.zeros(n_states)
for state in range(n_states):
delta_energy.append(find_delta_energy(energy_list[pos], alpha, conf_real_pred, e_pred, e_trans, pos, pred,
pred_opt, state, trans_prob, pred_prob))
delta_sum = np.sum(delta_energy, axis=1)
# best_state = np.argmin(delta_sum)
best_state = np.random.choice(len(delta_sum), 1, p=softmax(-betas[step] * delta_sum))[0]
# Update the state of the selected position and its neighbors.
pred_opt[pos] = best_state
energy_list[pos] += delta_energy[best_state][1]
if pos > 0:
energy_list[pos-1] += delta_energy[best_state][0]
if pos < len(energy_list) - 1:
energy_list[pos+1] += delta_energy[best_state][2]
return pred_opt
# 5. Optimize sleep series for multiple subjects in a dataset
def perform_optimizations_dataset(opt_params, part, model, dataset, writefile):
pickle_input = "../data/input_" + dataset + "_" + model + "_part_" + str(part) + ".pkl"
file = open(pickle_input, 'rb')
data_per_subj = pickle.load(file)
file.close()
# Concatenate validation data from all subjects
y_true_valid = []
y_pred_valid = []
y_prob_valid = []
for index, row in data_per_subj[data_per_subj['train_test'] == 'valid'].iterrows():
y_true_valid.append(row.y_true)
y_pred_valid.append(row.y_pred)
y_prob_valid.append(row.y_prob)
y_true_valid = np.hstack(y_true_valid)
y_pred_valid = np.hstack(y_pred_valid)
y_prob_valid = np.vstack(y_prob_valid)
# Determine Transition Probability matrix
y_true_train = []
for index, row in data_per_subj[data_per_subj['train_test'] == 'train'].iterrows():
y_true_train.append(row.y_true)
y_true_train = np.hstack(y_true_train)
trans_prob_train = find_transition_prob(y_true_train)
# output files
csv_file = '../output/sleep-results-' + dataset + '.csv'
npz_file = "../output/" + "energy-" + model + "-" + str(part) + "-" + dataset + "-opt.npz"
curr_time = '{date:%Y-%m-%d %H:%M:%S}'.format(date=datetime.datetime.now())
targets = ['0', '1', '2', '3', '4']
# Creates and normalizes confusion matrix from validation data
conf_mat_valid = confusion_matrix(y_true_valid, y_pred_valid)
conf_mat_valid = conf_mat_valid.astype('float') / conf_mat_valid.sum(axis=0)[:, np.newaxis]
# Print initial metrics
print_matrix('Confusion Matrix (Validation Set)', conf_mat_valid)
acc_valid = accuracy_score(y_true_valid, y_pred_valid) * 100
bal_valid = balanced_accuracy_score(y_true_valid, y_pred_valid) * 100
print("Accuracy: {:.2f}% (Validation)".format(acc_valid))
print("Balanced: {:.2f}% (Validation)".format(bal_valid))
report = classification_report(y_true_valid, y_pred_valid, target_names=targets, output_dict=True)
print_matrix('Transition Matrix (Training Set)', trans_prob_train)
# Optimization model parameters (alpha, beta, and epsilons). Check paper for details.
a_max_list, b_max, ep_max, et_max= [[0.5, 0.5]], 1.0, 0.1, 0.1
if opt_params:
a_max_list = [[0,1],[0.25,0.75],[0.5,0.5],[0.75,0.25],[1,0]]
# Number of otimization steps and schedule for the beta (1/temperature) value
n_steps = 5 * 1200
sched_steps = [1, 2, 4, 8]
beta_sched = []
for b in sched_steps:
beta_sched.append(np.ones(n_steps)*b)
beta_sched = np.array(beta_sched).flatten()
if 'recording' not in data_per_subj.columns:
data_per_subj['recording'] = np.zeros(len(data_per_subj), dtype='int')
y_test_list = {'pred': [], 'pred-opt': [], 'true': []}
print('\n\n===== Evaluating Optimizations =====')
metrics = {}
for index, row in data_per_subj[data_per_subj['train_test'] == 'test'].iterrows():
subj, rec = row['subjects'], row['recording']
for a_max in a_max_list:
print(subj, rec)
subj_data = data_per_subj.loc[data_per_subj['subjects'] == subj].loc[data_per_subj['recording'] == rec]
if subj_data.size == 0:
continue
y_pred_test = subj_data.y_pred.values[0]
y_prob_test = subj_data.y_prob.values[0]
y_true_test = subj_data.y_true.values[0]
# Apply energy-optimization for a single subject
y_pred_opt_test = optimize_energy(trans_prob_train, conf_mat_valid, y_pred_test, y_prob_test,
[], b_max * beta_sched, et_max, ep_max, a_max, n_steps)
metrics = evaluate_metrics(metrics, targets, y_pred_opt_test, y_pred_test, y_true_test, subj, rec, a_max)
if writefile:
write_results_file(opt_params, part, model, csv_file, metrics, curr_time,
a_max, ep_max, et_max, targets, y_pred_opt_test, y_pred_test, y_true_test)
y_test_list['pred-opt'].append(y_pred_opt_test)
y_test_list['pred'].append(y_pred_test)
y_test_list['true'].append(y_true_test)
# Write results to file
if writefile:
np.savez(npz_file, conf_mat_valid=conf_mat_valid, conf_mat_test=metrics['cm_test'],
conf_mat_opt=metrics['cm_opt'], trans_prob_train=trans_prob_train,
subj=metrics['subj'], rec=metrics['rec'], alpha=metrics['alpha'],
y_pred_opt_test_list=y_test_list['pred-opt'], y_pred_test_list=y_test_list['pred'],
y_true_test=y_test_list['true'])
print("\n================================================================")
print("Finished - model: " + model + " cross-validation: " + str(part) + " dataset: " + dataset)
print("mean_acc =", np.mean(metrics['acc']), "mean_acc_opt =", np.mean(metrics['acc_opt']))
print("std_acc =", np.std(metrics['acc']), "std_acc_opt =", np.std(metrics['acc_opt']))
print("mean_bal =", np.mean(metrics['bal']), "mean_bal_opt =", np.mean(metrics['bal_opt']))
print("std_bal =", np.std(metrics['bal']), "std_bal_opt =", np.std(metrics['bal_opt']))
print("================================================================ \n")
def write_results_file(optparams, part, model, csv_file, metr, curtime, a_max, ep_max, et_max, targets,
y_pred_opt_test, y_pred_test, y_true_test, pos=-1):
if not os.path.exists(csv_file):
row = ['type', 'part', 'model', 'optparams', 'et_max', 'ep_max', 'a_max',
'acc', 'acc_opt', 'bal', 'bal_opt', 'coh', 'coh_opt', 'timestamp']
for t in targets:
row += ['acc-' + t, 'acc-opt-' + t, 'prec-' + t, 'prec-opt-' + t, 'rec-' + t, 'rec-opt-' + t,
'f1-' + t, 'f1-opt-' + t, 'sup-' + t, 'sup-opt-' + t]
row += ['subject', 'record']
with open(csv_file, 'a+', newline='') as write_obj:
csv.writer(write_obj).writerow(row)
write_obj.flush()
report = classification_report(y_true_test, y_pred_test,
target_names=targets, output_dict=True, labels=list(map(int, targets)))
report_opt = classification_report(y_true_test, y_pred_opt_test,
target_names=targets, output_dict=True, labels=list(map(int, targets)))
results = ['energy', part, model, optparams, et_max, ep_max, a_max,
metr['acc'][pos], metr['acc_opt'][pos], metr['bal'][pos], metr['bal_opt'][pos], metr['coh'][pos],
metr['coh_opt'][pos], curtime]
for t in targets:
acc_t = metr['acc_class_test'][pos][int(t)]
acc_opt_t = metr['acc_class_opt'][pos][int(t)]
if np.isnan(acc_t):
acc_t = 0
if np.isnan(acc_opt_t):
acc_opt_t = 0
results += [acc_t, acc_opt_t,
report[t]['precision'], report_opt[t]['precision'],
report[t]['recall'], report_opt[t]['recall'],
report[t]['f1-score'], report_opt[t]['f1-score'],
report[t]['support'], report_opt[t]['support']]
results += [metr['subj'][pos], metr['rec'][pos]]
with open(csv_file, 'a+', newline='') as write_obj:
csv.writer(write_obj).writerow(results)
write_obj.flush()
# acc, acc_class_opt, acc_class_test, acc_opt, bal, bal_opt, cm_opt, cm_test, coh, coh_opt
def evaluate_metrics(metrics, targets, y_pred_opt_test, y_pred_test, y_true_test, subj=-1, rec=-1, alpha=None,
print_res=True):
if alpha is None:
alpha = [1.0, 1.0]
if len(metrics) == 0:
metrics = {'acc': [], 'acc_opt': [], 'bal': [], 'bal_opt': [], 'coh': [], 'coh_opt': [],
'cm_test': [], 'cm_opt': [], 'acc_class_test': [], 'acc_class_opt': [],
'y_true_counts': [], 'y_pred_counts': [], 'y_opt_counts': [], 'subj': [], 'rec': [], 'alpha': []}
labels = list(map(int, targets))
metrics['acc'].append(accuracy_score(y_true_test, y_pred_test))
metrics['acc_opt'].append(accuracy_score(y_true_test, y_pred_opt_test))
metrics['bal'].append(balanced_accuracy_score(y_true_test, y_pred_test))
metrics['bal_opt'].append(balanced_accuracy_score(y_true_test, y_pred_opt_test))
metrics['coh'].append(cohen_kappa_score(y_true_test, y_pred_test))
metrics['coh_opt'].append(cohen_kappa_score(y_true_test, y_pred_opt_test))
metrics['cm_test'].append(confusion_matrix(y_true_test, y_pred_test, normalize='true', labels=labels))
metrics['cm_opt'].append(confusion_matrix(y_true_test, y_pred_opt_test, normalize='true', labels=labels))
metrics['subj'].append(subj)
metrics['rec'].append(rec)
metrics['alpha'].append(alpha)
metrics['acc_class_test'].append(metrics['cm_test'][-1].diagonal() / metrics['cm_test'][-1].sum(axis=1))
metrics['acc_class_opt'].append(metrics['cm_opt'][-1].diagonal() / metrics['cm_opt'][-1].sum(axis=1))
metrics['y_true_counts'].append(get_targets_counts(targets, y_true_test))
metrics['y_pred_counts'].append(get_targets_counts(targets, y_pred_test))
metrics['y_opt_counts'].append(get_targets_counts(targets, y_pred_opt_test))
if print_res:
print("Accuracy: {:.2f}% (Test Set)".format(metrics['acc'][-1] * 100))
print("Accuracy: {:.2f}% (Optimized Test Set)".format(metrics['acc_opt'][-1] * 100))
print("Balanced Accuracy: {:.2f}% (Test Set)".format(metrics['bal'][-1] * 100))
print("Balanced Accuracy: {:.2f}% (Optimized Test Set)".format(metrics['bal_opt'][-1] * 100))
print("Cohen Kappa: {:.2f}% (Test Set)".format(metrics['coh'][-1] * 100))
print("Cohen Kappa: {:.2f}% (Optimized Test Set)".format(metrics['coh_opt'][-1] * 100))
print("Counts y_true: ")
print(metrics['y_true_counts'][-1] / sum(metrics['y_true_counts'][-1]))
print("Counts y_pred_test: ")
print(metrics['y_pred_counts'][-1] / sum(metrics['y_pred_counts'][-1]))
print("Counts y_pred_opt_test: ")
print(metrics['y_opt_counts'][-1] / sum(metrics['y_opt_counts'][-1]))
# print(classification_report(y_true_test, y_pred_test, target_names=targets, labels=labels))
# print(classification_report(y_true_test, y_pred_opt_test, target_names=targets, labels=labels))
# print_matrix('Confusion Matrix (Test Set)', metr['cm_test'][-1])
# print_matrix('Confusion Matrix (Optimized Set)', metr['cm_opt'][-1])
return metrics
def get_targets_counts(targets, y_true_test):
values, counts = np.unique(y_true_test, return_counts=True)
if len(values) < len(targets):
counts_new = np.zeros(len(targets))
for t, c in zip(values, counts):
counts_new[t] = c
counts = counts_new
return counts
def main(cmd_args):
opt_params = cmd_args.optparams
writefile = cmd_args.writefile
if cmd_args.part == -1:
part = [0, 1, 2, 3, 4]
else:
part = [cmd_args.part]
if cmd_args.model == 'all':
model = ['stager', 'usleep']
else:
model = [cmd_args.model]
if cmd_args.dataset == 'all':
dataset = ['edf', 'dreamer']
else:
dataset = [cmd_args.dataset]
for d in dataset:
for m in model:
for p in part:
perform_optimizations_dataset(opt_params, p, m, d, writefile)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Energy model')
parser.add_argument('--optparams', type=int, default=0,
help='Set 1 to optimize the energy model parameters and 0 otherwise.')
parser.add_argument('--part', type=int, default=0,
help='Define the CV slice, between 0 and 5. Use -1 for all parts.')
parser.add_argument('--model', type=str, default='usleep',
help='Name of the neural network model.', choices=['stager', 'usleep', 'all'])
parser.add_argument('--writefile', type=int, default=1,
help='Set 1 to write results to file and 0 otherwise.')
parser.add_argument('--dataset', type=str, default='edf',
help='Name of the dataset to optimize.', choices=['edf', 'dreamer', 'all'])
args = parser.parse_args()
main(args)