-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathagent.py
executable file
·218 lines (171 loc) · 7.78 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import numpy as np
import tensorflow as tf
import datetime
from memory import ReplayMemory
import progressbar
import pickle
import math
from NoisyDense import NoisyNetDense
class Agent:
def __init__(self,
environment,
optimizer,
memory_length,
dueling=True,
loss='mse',
noisy_net=False,
egreedy=False,
save_memory=None,
save_weights=None,
verbose_action=False,
):
self.environment = environment
self._optimizer = optimizer
self._loss = loss
self.dueling = dueling
self.egreedy = egreedy
self.noisy_net = noisy_net
# Initialize discount and exploration rate, etc
self.total_steps = 0
self.gamma = 0.99
self.epsilon = 1
self.epsilon_min = 0.01
self.epsilon_decay = 0.00005
self.tau = 0.01
self.pretraining_steps = 0
# Build networks
self.q_network = self._build_compile_model()
self.target_network = self._build_compile_model()
self.align_target_model(how='hard')
self.memory = ReplayMemory(memory_length)
self.save_weights_fp = save_weights
self.save_memory_fp = save_memory
self.start_time = datetime.datetime.now()
self.verbose_action = verbose_action
def load_memory(self, fp):
with open(fp, 'rb') as f:
self.memory.load_memory(pickle.load(f))
print(f'loading {self.memory.length} memories...')
def save_memory(self, fp):
if fp:
with open(fp, 'wb') as f:
print('saving replay memory...')
pickle.dump(self.memory.get_memory(), f)
def load_weights(self, weights_fp):
if weights_fp:
print('loading weights...')
self.q_network.load_weights(weights_fp)
self.align_target_model(how='hard')
def save_weights(self, weights_fp):
if weights_fp:
self.q_network.save_weights(weights_fp)
def set_epsilon_decay_schedule(self, epsilon, epsilon_min, annealed_steps):
self.epsilon = epsilon
self.epsilon_min = epsilon_min
self.epsilon_decay = math.log(self.epsilon / self.epsilon_min) / annealed_steps
def set_beta_schedule(self, beta_start, beta_max, annealed_samplings):
self.memory.beta = beta_start
self.memory.beta_max = beta_max
self.memory.beta_increment_per_sampling = (self.memory.beta_max - self.memory.beta) / annealed_samplings
def predict(self, state, use_target=False):
if use_target:
return self.target_network.predict(state)
else:
return self.q_network.predict(state)
def _decay_epsilon(self):
self.epsilon = self.epsilon * np.exp(-self.epsilon_decay)
def store(self, state, action, reward, next_state, terminated):
self.memory.add((state, action, reward, next_state, terminated))
self.total_steps += 1
if not self.egreedy:
if (self.epsilon > self.epsilon_min) and (self.memory.length > self.pretraining_steps):
self._decay_epsilon()
def batch_store(self, batch_load):
batch_load[-2][2] = -0.1 # custom reward altering
batch_load[-3][2] = 0 # custom reward altering
for row in batch_load:
self.store(*row)
def _build_compile_model(self):
inputs = tf.keras.layers.Input(shape=(20, 157, 4))
conv1 = tf.keras.layers.Conv2D(32, (8, 8), strides=4, padding='same', activation='relu')(inputs)
conv2 = tf.keras.layers.Conv2D(64, (4, 4), strides=2, padding='same', activation='relu')(conv1)
conv3 = tf.keras.layers.Conv2D(64, (3, 3), strides=1, padding='same', activation='relu')(conv2)
conv3 = tf.keras.layers.Flatten()(conv3)
if self.noisy_net:
advt = NoisyNetDense(256, activation='relu')(conv3)
final = NoisyNetDense(2)(advt)
else:
advt = tf.keras.layers.Dense(256, activation='relu')(conv3)
final = tf.keras.layers.Dense(2)(advt)
if self.dueling:
if self.noisy_net:
value = NoisyNetDense(256, activation='relu')(conv3)
value = NoisyNetDense(1)(value)
else:
value = tf.keras.layers.Dense(256, activation='relu')(conv3)
value = tf.keras.layers.Dense(1)(value)
advt = tf.keras.layers.Lambda(lambda x: x - tf.reduce_mean(x, axis=1, keepdims=True))(final)
final = tf.keras.layers.Add()([value, advt])
model = tf.keras.models.Model(inputs=inputs, outputs=final)
model.compile(optimizer=self._optimizer,
loss=self._loss,
metrics=['accuracy'])
return model
def align_target_model(self, how):
assert how in ('hard', 'soft'), '"how" must be either "hard" or "soft"'
if how == 'hard':
self.target_network.set_weights(self.q_network.get_weights())
elif how == 'soft':
for t, e in zip(self.target_network.trainable_variables, self.q_network.trainable_variables):
t.assign(t * (1 - self.tau) + (e * self.tau))
def choose_action(self, state):
if not self.egreedy:
if np.random.rand() <= self.epsilon:
action = self.environment.action_space.sample()
if self.verbose_action:
print(f'action: {action}, q: random')
return action, np.NaN
q_values = self.predict(state, use_target=False)
action = np.argmax(q_values[0])
if self.verbose_action:
print(f'action: {action}, q: {q_values}')
return action, np.max(q_values)
def train(self, batch, is_weights):
td_errors = np.zeros(len(batch))
states = np.zeros((len(batch), 20, 157, 4))
targets = np.zeros((len(batch), 2))
for i, (state, action, reward, next_state, terminated) in enumerate(batch):
target, td_error = self._get_target(state, action, reward, next_state, terminated)
states[i] = state.reshape(20, 157, 4)
targets[i] = target
td_errors[i] = td_error
self.q_network.fit(states, targets, sample_weight=is_weights, batch_size=32, epochs=1, verbose=0)
self.align_target_model(how='soft')
return td_errors
def replay(self, batch_size, epoch_steps=None):
num_batches = 1
if epoch_steps:
num_batches = int(np.max([np.floor(epoch_steps / 8), 1]))
if num_batches > 500:
num_batches = 500
bar = progressbar.ProgressBar(maxval=num_batches,
widgets=[f'training - ', progressbar.widgets.Counter(), f'/{num_batches} ',
progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage()])
bar.start()
for i in range(num_batches):
leaf_idx, batch, is_weights = self.memory.get_batch(batch_size) # prioritized experience replay
td_errors = self.train(batch, is_weights)
self.memory.update_sum_tree(leaf_idx, td_errors)
bar.update(i + 1)
bar.finish()
self.save_weights(self.save_weights_fp)
def _get_target(self, state, action, reward, next_state, terminated):
target = self.predict(state, use_target=False)
prev_target = target[0][action]
if terminated:
target[0][action] = reward
else:
a = np.argmax(self.predict(next_state, use_target=False)[0])
target[0][action] = reward + (self.gamma * self.predict(next_state, use_target=True)[0][a]) # double Q Network
td_error = abs(prev_target - target[0][action])
return target, td_error