@@ -210,26 +210,36 @@ def zscore_trial_segs(
210
210
train_nan_cols = ~ train_notnan_cols
211
211
if is_2D :
212
212
normed_train = np .divide (train - train_mean , train_std , where = train_notnan_cols )
213
- normed_train .loc [:, train_nan_cols ] = 0
213
+ # if train is not jagged, it gets converted completely to object
214
+ # np.ndarray. Hence, cannot exclusively use normed_train.loc
215
+ if isinstance (normed_train , pd .DataFrame ):
216
+ normed_train = normed_train .loc
217
+ normed_train [:, train_nan_cols ] = 0
214
218
else :
215
219
normed_train = np .empty_like (train )
216
220
for i , nsvstseg in enumerate (train ):
217
221
zscored = np .divide (nsvstseg - train_mean , train_std , where = train_notnan_cols )
218
- zscored .loc [:, train_nan_cols ] = 0
222
+ if isinstance (zscored , pd .DataFrame ):
223
+ zscored = zscored .loc
224
+ zscored [:, train_nan_cols ] = 0
219
225
normed_train [i ] = zscored
220
226
221
227
normed_rest_feats = []
222
228
if rest_feats is not None :
223
229
for feats in rest_feats :
224
230
if is_2D :
225
231
normed_feats = np .divide (feats - train_mean , train_std , where = train_notnan_cols )
226
- normed_feats .loc [:, train_nan_cols ] = 0
232
+ if isinstance (normed_feats , pd .DataFrame ):
233
+ normed_feats = normed_feats .loc
234
+ normed_feats [:, train_nan_cols ] = 0
227
235
normed_rest_feats .append (normed_feats )
228
236
else :
229
237
normed_feats = np .empty_like (feats )
230
238
for i , trialSegROI in enumerate (feats ):
231
239
zscored = np .divide (feats [i ]- train_mean , train_std , where = train_notnan_cols )
232
- zscored .loc [:, train_nan_cols ] = 0
240
+ if isinstance (zscored , pd .DataFrame ):
241
+ zscored = zscored .loc
242
+ zscored [:, train_nan_cols ] = 0
233
243
normed_feats [i ] = zscored
234
244
normed_rest_feats .append (normed_feats )
235
245
0 commit comments