@@ -269,6 +269,259 @@ impl Queue {
269
269
}
270
270
}
271
271
272
+ #[ cfg( kani) ]
273
+ #[ allow( dead_code) ]
274
+ mod verification {
275
+ use std:: mem:: ManuallyDrop ;
276
+ use vm_memory:: MmapRegion ;
277
+
278
+ use std:: num:: Wrapping ;
279
+ use vm_memory:: FileOffset ;
280
+
281
+ use vm_memory:: guest_memory:: GuestMemoryIterator ;
282
+ use vm_memory:: { GuestMemoryRegion , MemoryRegionAddress } ;
283
+
284
+ use super :: * ;
285
+
286
+ /// A made-for-kani version of `vm_memory::GuestMemoryMmap`. Unlike the real
287
+ /// `GuestMemoryMmap`, which manages a list of regions and then does a binary
288
+ /// search to determine which region a specific read or write request goes to,
289
+ /// this only uses a single region. Eliminating this binary search significantly
290
+ /// speeds up all queue proofs, because it eliminates the only loop contained herein,
291
+ /// meaning we can use `kani::unwind(0)` instead of `kani::unwind(2)`. Functionally,
292
+ /// it works identically to `GuestMemoryMmap` with only a single contained region.
293
+ pub struct ProofGuestMemory {
294
+ the_region : vm_memory:: GuestRegionMmap ,
295
+ }
296
+
297
+ impl < ' a > GuestMemoryIterator < ' a , vm_memory:: GuestRegionMmap > for ProofGuestMemory {
298
+ type Iter = std:: iter:: Once < & ' a vm_memory:: GuestRegionMmap > ;
299
+ }
300
+
301
+ impl GuestMemory for ProofGuestMemory {
302
+ type R = vm_memory:: GuestRegionMmap ;
303
+ type I = Self ;
304
+
305
+ fn num_regions ( & self ) -> usize {
306
+ 1
307
+ }
308
+
309
+ fn find_region ( & self , addr : GuestAddress ) -> Option < & Self :: R > {
310
+ self . the_region
311
+ . to_region_addr ( addr)
312
+ . map ( |_| & self . the_region )
313
+ }
314
+
315
+ fn iter ( & self ) -> <Self :: I as GuestMemoryIterator < Self :: R > >:: Iter {
316
+ std:: iter:: once ( & self . the_region )
317
+ }
318
+
319
+ fn try_access < F > (
320
+ & self ,
321
+ count : usize ,
322
+ addr : GuestAddress ,
323
+ mut f : F ,
324
+ ) -> vm_memory:: guest_memory:: Result < usize >
325
+ where
326
+ F : FnMut (
327
+ usize ,
328
+ usize ,
329
+ MemoryRegionAddress ,
330
+ & Self :: R ,
331
+ ) -> vm_memory:: guest_memory:: Result < usize > ,
332
+ {
333
+ // We only have a single region, meaning a lot of the complications of the default
334
+ // try_access implementation for dealing with reads/writes across multiple
335
+ // regions does not apply.
336
+ let region_addr = self
337
+ . the_region
338
+ . to_region_addr ( addr)
339
+ . ok_or ( vm_memory:: guest_memory:: Error :: InvalidGuestAddress ( addr) ) ?;
340
+ self . the_region
341
+ . checked_offset ( region_addr, count)
342
+ . ok_or ( vm_memory:: guest_memory:: Error :: InvalidGuestAddress ( addr) ) ?;
343
+ f ( 0 , count, region_addr, & self . the_region )
344
+ }
345
+ }
346
+
347
+ pub struct ProofContext ( pub Queue , pub ProofGuestMemory ) ;
348
+
349
+ pub struct MmapRegionStub {
350
+ addr : * mut u8 ,
351
+ size : usize ,
352
+ bitmap : ( ) ,
353
+ file_offset : Option < FileOffset > ,
354
+ prot : i32 ,
355
+ flags : i32 ,
356
+ owned : bool ,
357
+ hugetlbfs : Option < bool > ,
358
+ }
359
+
360
+ /// We start the first guest memory region at an offset so that harnesses using
361
+ /// Queue::any() will be exposed to queue segments both before and after valid guest memory.
362
+ /// This is conforming to MockSplitQueue::new() that uses `0` as starting address of the
363
+ /// virtqueue. Also, QUEUE_END is the size only if GUEST_MEMORY_BASE is `0`
364
+ const GUEST_MEMORY_BASE : u64 = 0 ;
365
+
366
+ // We size our guest memory to fit a properly aligned queue, plus some wiggles bytes
367
+ // to make sure we not only test queues where all segments are consecutively aligned.
368
+ // We need to give at least 16 bytes of buffer space for the descriptor table to be
369
+ // able to change its address, as it is 16-byte aligned.
370
+ const GUEST_MEMORY_SIZE : usize = QUEUE_END as usize + 30 ;
371
+
372
+ fn guest_memory ( memory : * mut u8 ) -> ProofGuestMemory {
373
+ // Ideally, we'd want to do
374
+ // let region = unsafe {MmapRegionBuilder::new(GUEST_MEMORY_SIZE)
375
+ // .with_raw_mmap_pointer(bytes.as_mut_ptr())
376
+ // .build()
377
+ // .unwrap()};
378
+ // However, .build() calls to .build_raw(), which contains a call to libc::sysconf.
379
+ // Since kani 0.34.0, stubbing out foreign functions is supported, but due to the rust
380
+ // standard library using a special version of the libc crate, it runs into some problems
381
+ // [1] Even if we work around those problems, we run into performance problems [2].
382
+ // Therefore, for now we stick to this ugly transmute hack (which only works because
383
+ // the kani compiler will never re-order fields, so we can treat repr(Rust) as repr(C)).
384
+ //
385
+ // [1]: https://github.com/model-checking/kani/issues/2673
386
+ // [2]: https://github.com/model-checking/kani/issues/2538
387
+ let region_stub = MmapRegionStub {
388
+ addr : memory,
389
+ size : GUEST_MEMORY_SIZE ,
390
+ bitmap : Default :: default ( ) ,
391
+ file_offset : None ,
392
+ prot : 0 ,
393
+ flags : libc:: MAP_ANONYMOUS | libc:: MAP_PRIVATE ,
394
+ owned : false ,
395
+ hugetlbfs : None ,
396
+ } ;
397
+
398
+ let region: MmapRegion < ( ) > = unsafe { std:: mem:: transmute ( region_stub) } ;
399
+
400
+ let guest_region =
401
+ vm_memory:: GuestRegionMmap :: new ( region, GuestAddress ( GUEST_MEMORY_BASE ) ) . unwrap ( ) ;
402
+
403
+ // Use a single memory region, just as firecracker does for guests of size < 2GB
404
+ // For largest guests, firecracker uses two regions (due to the MMIO gap being
405
+ // at the top of 32-bit address space)
406
+ ProofGuestMemory {
407
+ the_region : guest_region,
408
+ }
409
+ }
410
+
411
+ // can't implement kani::Arbitrary for the relevant types due to orphan rules
412
+ fn setup_kani_guest_memory ( ) -> ProofGuestMemory {
413
+ // Non-deterministic Vec that will be used as the guest memory. We use `exact_vec` for now
414
+ // as `any_vec` will likely result in worse performance. We do not loose much from
415
+ // `exact_vec`, as our proofs do not make any assumptions about "filling" guest
416
+ // memory: Since everything is placed at non-deterministic addresses with
417
+ // non-deterministic lengths, we still cover all scenarios that would be covered by
418
+ // smaller guest memory closely. We leak the memory allocated here, so that it
419
+ // doesnt get deallocated at the end of this function. We do not explicitly
420
+ // de-allocate, but since this is a kani proof, that does not matter.
421
+ guest_memory (
422
+ ManuallyDrop :: new ( kani:: vec:: exact_vec :: < u8 , GUEST_MEMORY_SIZE > ( ) ) . as_mut_ptr ( ) ,
423
+ )
424
+ }
425
+
426
+ const MAX_QUEUE_SIZE : u16 = 256 ;
427
+
428
+ // Constants describing the in-memory layout of a queue of size MAX_QUEUE_SIZE starting
429
+ // at the beginning of guest memory. These are based on Section 2.7 of the VirtIO 1.2
430
+ // specification.
431
+ const QUEUE_BASE_ADDRESS : u64 = GUEST_MEMORY_BASE ;
432
+
433
+ /// descriptor table has 16 bytes per entry, avail ring starts right after
434
+ const AVAIL_RING_BASE_ADDRESS : u64 = QUEUE_BASE_ADDRESS + MAX_QUEUE_SIZE as u64 * 16 ;
435
+
436
+ /// Used ring starts after avail ring (which has size 6 + 2 * MAX_QUEUE_SIZE),
437
+ /// and needs 2 bytes of padding
438
+ const USED_RING_BASE_ADDRESS : u64 = AVAIL_RING_BASE_ADDRESS + 6 + 2 * MAX_QUEUE_SIZE as u64 + 2 ;
439
+
440
+ /// The address of the first byte after the queue. Since our queue starts at guest physical
441
+ /// address 0, this is also the size of the memory area occupied by the queue.
442
+ /// Note that the used ring structure has size 6 + 8 * MAX_QUEUE_SIZE
443
+ const QUEUE_END : u64 = USED_RING_BASE_ADDRESS + 6 + 8 * MAX_QUEUE_SIZE as u64 ;
444
+
445
+ impl kani:: Arbitrary for ProofContext {
446
+ fn any ( ) -> Self {
447
+ let mem = setup_kani_guest_memory ( ) ;
448
+
449
+ let mut queue = Queue :: new ( MAX_QUEUE_SIZE ) . unwrap ( ) ;
450
+
451
+ queue. ready = true ;
452
+
453
+ queue. set_desc_table_address (
454
+ Some ( QUEUE_BASE_ADDRESS as u32 ) ,
455
+ Some ( ( QUEUE_BASE_ADDRESS >> 32 ) as u32 ) ,
456
+ ) ;
457
+
458
+ queue. set_avail_ring_address (
459
+ Some ( AVAIL_RING_BASE_ADDRESS as u32 ) ,
460
+ Some ( ( AVAIL_RING_BASE_ADDRESS >> 32 ) as u32 ) ,
461
+ ) ;
462
+
463
+ queue. set_used_ring_address (
464
+ Some ( USED_RING_BASE_ADDRESS as u32 ) ,
465
+ Some ( ( USED_RING_BASE_ADDRESS >> 32 ) as u32 ) ,
466
+ ) ;
467
+
468
+ queue. set_next_avail ( kani:: any ( ) ) ;
469
+ queue. set_next_used ( kani:: any ( ) ) ;
470
+ queue. set_event_idx ( kani:: any ( ) ) ;
471
+ queue. num_added = Wrapping ( kani:: any ( ) ) ;
472
+
473
+ kani:: assume ( queue. is_valid ( & mem) ) ;
474
+
475
+ ProofContext ( queue, mem)
476
+ }
477
+ }
478
+
479
+ #[ kani:: proof]
480
+ #[ kani:: unwind( 0 ) ] // There are no loops anywhere, but kani really enjoys getting stuck in std::ptr::drop_in_place.
481
+ // This is a compiler intrinsic that has a "dummy" implementation in stdlib that just
482
+ // recursively calls itself. Kani will generally unwind this recursion infinitely
483
+ fn verify_spec_2_7_7_2 ( ) {
484
+ // Section 2.7.7.2 deals with device-to-driver notification suppression.
485
+ // It describes a mechanism by which the driver can tell the device that it does not
486
+ // want notifications (IRQs) about the device finishing processing individual buffers
487
+ // (descriptor chain heads) from the avail ring until a specific number of descriptors
488
+ // has been processed. This is done by the driver
489
+ // defining a "used_event" index, which tells the device "please do not notify me until
490
+ // used.ring[used_event] has been written to by you".
491
+ let ProofContext ( mut queue, mem) = kani:: any ( ) ;
492
+
493
+ let num_added_old = queue. num_added . 0 ;
494
+ let needs_notification = queue. needs_notification ( & mem) ;
495
+
496
+ // event_idx_enabled equivalent to VIRTIO_F_EVENT_IDX negotiated
497
+ if !queue. event_idx_enabled {
498
+ // The specification here says
499
+ // After the device writes a descriptor index into the used ring:
500
+ // – If flags is 1, the device SHOULD NOT send a notification.
501
+ // – If flags is 0, the device MUST send a notification
502
+ // flags is the first field in the avail_ring_address, which we completely ignore. We
503
+ // always send a notification, and as there only is a SHOULD NOT, that is okay
504
+ assert ! ( needs_notification. unwrap( ) ) ;
505
+ } else {
506
+ // next_used - 1 is where the previous descriptor was placed
507
+ if Wrapping ( queue. used_event ( & mem, Ordering :: Relaxed ) . unwrap ( ) )
508
+ == std:: num:: Wrapping ( queue. next_used - Wrapping ( 1 ) )
509
+ && num_added_old > 0
510
+ {
511
+ // If the idx field in the used ring (which determined where that descriptor index
512
+ // was placed) was equal to used_event, the device MUST send a
513
+ // notification.
514
+ assert ! ( needs_notification. unwrap( ) ) ;
515
+
516
+ kani:: cover!( ) ;
517
+ }
518
+
519
+ // The other case is handled by a "SHOULD NOT send a notification" in the spec.
520
+ // So we do not care
521
+ }
522
+ }
523
+ }
524
+
272
525
impl < ' a > QueueGuard < ' a > for Queue {
273
526
type G = & ' a mut Self ;
274
527
}
0 commit comments