10
10
11
11
//! Basic floating-point number distributions
12
12
13
- use core:: mem;
13
+ use core:: { cmp , mem} ;
14
14
use Rng ;
15
15
use distributions:: { Distribution , Standard } ;
16
16
use distributions:: utils:: CastFromInt ;
@@ -98,22 +98,20 @@ impl<F: HPFloatHelper> HighPrecision<F> {
98
98
}
99
99
100
100
/// Generate a floating point number in the half-open interval `[0, 1)` with a
101
- /// uniform distribution.
101
+ /// uniform distribution, with as much precision as the floating-point type
102
+ /// can represent, including sub-normals.
102
103
///
103
- /// This is different from `Uniform` in that it uses all 32 bits of an RNG for a
104
- /// `f32`, instead of only 23, the number of bits that fit in a floats fraction
105
- /// (or 64 instead of 52 bits for a `f64`).
104
+ /// Technically 0 is representable, but the probability of occurrence is
105
+ /// remote (1 in 2^149 for `f32` or 1 in 2^1074 for `f64`).
106
106
///
107
- /// The smallest interval between values that can be generated is 2^-32
108
- /// (2.3283064e-10) for `f32`, and 2^-64 (5.421010862427522e-20) for `f64`.
109
- /// But this interval increases further away from zero because of limitations of
110
- /// the floating point format. Close to 1.0 the interval is 2^-24 (5.9604645e-8)
111
- /// for `f32`, and 2^-53 (1.1102230246251565) for `f64`. Compare this with
112
- /// `Uniform`, which has a fixed interval of 2^23 and 2^-52 respectively.
113
- ///
114
- /// Note: in the future this may change change to request even more bits from
115
- /// the RNG if the value gets very close to 0.0, so it always has as many digits
116
- /// of precision as the float can represent.
107
+ /// This is different from `Uniform` in that it uses as many random bits as
108
+ /// required to get high precision close to 0. Normally only a single call to
109
+ /// the source RNG is required (32 bits for `f32` or 64 bits for `f64`); 1 in
110
+ /// 2^9 (`f32`) or 2^12 (`f64`) samples need an extra call; of these 1 in 2^32
111
+ /// or 1 in 2^64 require a third call, etc.; i.e. even for `f32` a third call is
112
+ /// almost impossible to observe with an unbiased RNG. Due to the extra logic
113
+ /// there is some performance overhead relative to `Uniform`; this is more
114
+ /// significant for `f32` than for `f64`.
117
115
///
118
116
/// # Example
119
117
/// ```rust
@@ -229,24 +227,10 @@ float_impls! { f64x8, u64x8, f64, u64, 52, 1023 }
229
227
230
228
231
229
macro_rules! high_precision_float_impls {
232
- ( $ty: ty, $uty: ty, $ity: ty, $fraction_bits: expr, $exponent_bits: expr) => {
230
+ ( $ty: ty, $uty: ty, $ity: ty, $fraction_bits: expr, $exponent_bits: expr, $exponent_bias : expr ) => {
233
231
impl Distribution <$ty> for HighPrecision01 {
234
232
/// Generate a floating point number in the half-open interval
235
- /// `[0, 1)` with a uniform distribution.
236
- ///
237
- /// This is different from `Uniform` in that it uses all 32 bits
238
- /// of an RNG for a `f32`, instead of only 23, the number of bits
239
- /// that fit in a floats fraction (or 64 instead of 52 bits for a
240
- /// `f64`).
241
- ///
242
- /// # Example
243
- /// ```rust
244
- /// use rand::{NewRng, SmallRng, Rng};
245
- /// use rand::distributions::HighPrecision01;
246
- ///
247
- /// let val: f32 = SmallRng::new().sample(HighPrecision01);
248
- /// println!("f32 from [0,1): {}", val);
249
- /// ```
233
+ /// `[0, 1)` with a uniform distribution. See [`HighPrecision01`].
250
234
///
251
235
/// # Algorithm
252
236
/// (Note: this description used values that apply to `f32` to
@@ -255,34 +239,50 @@ macro_rules! high_precision_float_impls {
255
239
/// The trick to generate a uniform distribution over [0,1) is to
256
240
/// set the exponent to the -log2 of the remaining random bits. A
257
241
/// simpler alternative to -log2 is to count the number of trailing
258
- /// zero's of the random bits.
242
+ /// zeros in the random bits. In the case where all bits are zero,
243
+ /// we simply generate a new random number and add the number of
244
+ /// trailing zeros to the previous count (up to maximum exponent).
259
245
///
260
246
/// Each exponent is responsible for a piece of the distribution
261
- /// between [0,1). The exponent -1 fills the part [0.5,1). -2 fills
262
- /// [0.25,0.5). The lowest exponent we can get is -10. So a problem
263
- /// with this method is that we can not fill the part between zero
264
- /// and the part from -10. The solution is to treat numbers with an
265
- /// exponent of -10 as if they have -9 as exponent, and substract
266
- /// 2^-9 (implemented in the `fallback` function).
247
+ /// between [0,1). We take the above exponent, add 1 and negate;
248
+ /// thus with probability 1/2 we have exponent -1 which fills the
249
+ /// range [0.5,1); with probability 1/4 we have exponent -2 which
250
+ /// fills the range [0.25,0.5), etc. If the exponent reaches the
251
+ /// minimum allowed, the floating-point format drops the implied
252
+ /// fraction bit, thus allowing numbers down to 0 to be sampled.
253
+ ///
254
+ /// [`HighPrecision01`]: struct.HighPrecision01.html
267
255
#[ inline]
268
256
fn sample<R : Rng + ?Sized >( & self , rng: & mut R ) -> $ty {
257
+ // Unusual case. Separate function to allow inlining of rest.
269
258
#[ inline( never) ]
270
- fn fallback( fraction: $uty) -> $ty {
271
- let float_size = ( mem:: size_of:: <$ty>( ) * 8 ) as i32 ;
272
- let min_exponent = $fraction_bits as i32 - float_size;
273
- let adjust = // 2^MIN_EXPONENT
274
- ( 0 as $uty) . into_float_with_exponent( min_exponent) ;
275
- fraction. into_float_with_exponent( min_exponent) - adjust
259
+ fn fallback<R : Rng + ?Sized >( mut exp: i32 , fraction: $uty, rng: & mut R ) -> $ty {
260
+ // Performance impact of code here is negligible.
261
+ let bits = rng. gen :: <$uty>( ) ;
262
+ exp += bits. trailing_zeros( ) as i32 ;
263
+ // If RNG were guaranteed unbiased we could skip the
264
+ // check against exp; unfortunately it may be.
265
+ // Worst case ("zeros" RNG) has recursion depth 16.
266
+ if bits == 0 && exp < $exponent_bias {
267
+ return fallback( exp, fraction, rng) ;
268
+ }
269
+ exp = cmp:: min( exp, $exponent_bias) ;
270
+ fraction. into_float_with_exponent( -exp)
276
271
}
277
272
278
273
let fraction_mask = ( 1 << $fraction_bits) - 1 ;
279
274
let value: $uty = rng. gen ( ) ;
280
275
281
276
let fraction = value & fraction_mask;
282
277
let remaining = value >> $fraction_bits;
283
- // If `remaing ==0` we end up in the lowest exponent, which
284
- // needs special treatment.
285
- if remaining == 0 { return fallback( fraction) }
278
+ if remaining == 0 {
279
+ // exp is compile-time constant so this reduces to a function call:
280
+ let size_bits = ( mem:: size_of:: <$ty>( ) * 8 ) as i32 ;
281
+ let exp = ( size_bits - $fraction_bits as i32 ) + 1 ;
282
+ return fallback( exp, fraction, rng) ;
283
+ }
284
+
285
+ // Usual case: exponent from -1 to -9 (f32) or -12 (f64)
286
286
let exp = remaining. trailing_zeros( ) as i32 + 1 ;
287
287
fraction. into_float_with_exponent( -exp)
288
288
}
@@ -444,8 +444,8 @@ macro_rules! high_precision_float_impls {
444
444
}
445
445
}
446
446
447
- high_precision_float_impls ! { f32 , u32 , i32 , 23 , 8 }
448
- high_precision_float_impls ! { f64 , u64 , i64 , 52 , 11 }
447
+ high_precision_float_impls ! { f32 , u32 , i32 , 23 , 8 , 127 }
448
+ high_precision_float_impls ! { f64 , u64 , i64 , 52 , 11 , 1023 }
449
449
450
450
451
451
#[ cfg( test) ]
@@ -729,4 +729,31 @@ mod tests {
729
729
assert_eq ! ( ones. sample:: <f32 , _>( HighPrecision01 ) , 0.99999994 ) ;
730
730
assert_eq ! ( ones. sample:: <f64 , _>( HighPrecision01 ) , 0.9999999999999999 ) ;
731
731
}
732
+
733
+ #[ cfg( feature="std" ) ] mod mean {
734
+ use Rng ;
735
+ use distributions:: { Standard , HighPrecision01 } ;
736
+
737
+ macro_rules! test_mean {
738
+ ( $name: ident, $ty: ty, $distr: expr) => {
739
+ #[ test]
740
+ fn $name( ) {
741
+ // TODO: no need to &mut here:
742
+ let mut r = :: test:: rng( 602 ) ;
743
+ let mut total: $ty = 0.0 ;
744
+ const N : u32 = 1_000_000 ;
745
+ for _ in 0 ..N {
746
+ total += r. sample:: <$ty, _>( $distr) ;
747
+ }
748
+ let avg = total / ( N as $ty) ;
749
+ //println!("average over {} samples: {}", N, avg);
750
+ assert!( 0.499 < avg && avg < 0.501 ) ;
751
+ }
752
+ } }
753
+
754
+ test_mean ! ( test_mean_f32, f32 , Standard ) ;
755
+ test_mean ! ( test_mean_f64, f64 , Standard ) ;
756
+ test_mean ! ( test_mean_high_f32, f32 , HighPrecision01 ) ;
757
+ test_mean ! ( test_mean_high_f64, f64 , HighPrecision01 ) ;
758
+ }
732
759
}
0 commit comments