|
| 1 | +#![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")] |
| 2 | + |
| 3 | +use core::alloc::LayoutError; |
| 4 | +use core::cmp; |
| 5 | +use core::intrinsics; |
| 6 | +use core::mem; |
| 7 | +use core::mem::MaybeUninit; |
| 8 | +use core::ptr::NonNull; |
| 9 | + |
| 10 | +#[cfg(not(no_global_oom_handling))] |
| 11 | +use crate::alloc::handle_alloc_error; |
| 12 | +use crate::alloc::{Allocator, Layout}; |
| 13 | +use crate::boxed::Box; |
| 14 | +use crate::collections::TryReserveError; |
| 15 | +use crate::collections::TryReserveErrorKind::*; |
| 16 | + |
| 17 | +#[cfg(test)] |
| 18 | +mod tests; |
| 19 | + |
| 20 | +#[cfg(not(no_global_oom_handling))] |
| 21 | +pub(crate) enum AllocInit { |
| 22 | + /// The contents of the new memory are uninitialized. |
| 23 | + Uninitialized, |
| 24 | + /// The new memory is guaranteed to be zeroed. |
| 25 | + Zeroed, |
| 26 | +} |
| 27 | + |
| 28 | +pub(crate) trait BoxStorage: Sized { |
| 29 | + // Tiny Vecs are dumb. Skip to: |
| 30 | + // - 8 if the element size is 1, because any heap allocators is likely |
| 31 | + // to round up a request of less than 8 bytes to at least 8 bytes. |
| 32 | + // - 4 if elements are moderate-sized (<= 1 KiB). |
| 33 | + // - 1 otherwise, to avoid wasting too much space for very short Vecs. |
| 34 | + const MIN_NON_ZERO_CAP: usize; |
| 35 | + |
| 36 | + /// Gets the capacity of the allocation. |
| 37 | + /// |
| 38 | + /// This will always be `usize::MAX` if `T` is zero-sized. |
| 39 | + fn capacity(&self) -> usize; |
| 40 | + |
| 41 | + /// Ensures that the buffer contains at least enough space to hold `len + |
| 42 | + /// additional` elements. If it doesn't already have enough capacity, will |
| 43 | + /// reallocate enough space plus comfortable slack space to get amortized |
| 44 | + /// *O*(1) behavior. Will limit this behavior if it would needlessly cause |
| 45 | + /// itself to panic. |
| 46 | + /// |
| 47 | + /// If `len` exceeds `self.capacity()`, this may fail to actually allocate |
| 48 | + /// the requested space. This is not really unsafe, but the unsafe |
| 49 | + /// code *you* write that relies on the behavior of this function may break. |
| 50 | + /// |
| 51 | + /// This is ideal for implementing a bulk-push operation like `extend`. |
| 52 | + /// |
| 53 | + /// # Panics |
| 54 | + /// |
| 55 | + /// Panics if the new capacity exceeds `isize::MAX` bytes. |
| 56 | + /// |
| 57 | + /// # Aborts |
| 58 | + /// |
| 59 | + /// Aborts on OOM. |
| 60 | + #[cfg(not(no_global_oom_handling))] |
| 61 | + #[inline] |
| 62 | + fn reserve(&mut self, len: usize, additional: usize) { |
| 63 | + // Callers expect this function to be very cheap when there is already sufficient capacity. |
| 64 | + // Therefore, we move all the resizing and error-handling logic from grow_amortized and |
| 65 | + // handle_reserve behind a call, while making sure that this function is likely to be |
| 66 | + // inlined as just a comparison and a call if the comparison fails. |
| 67 | + #[cold] |
| 68 | + fn do_reserve_and_handle<T: BoxStorage>(slf: &mut T, len: usize, additional: usize) { |
| 69 | + handle_reserve(slf.grow_amortized(len, additional)); |
| 70 | + } |
| 71 | + |
| 72 | + if self.needs_to_grow(len, additional) { |
| 73 | + do_reserve_and_handle(self, len, additional); |
| 74 | + } |
| 75 | + } |
| 76 | + |
| 77 | + /// Returns if the buffer needs to grow to fulfill the needed extra capacity. |
| 78 | + /// Mainly used to make inlining reserve-calls possible without inlining `grow`. |
| 79 | + fn needs_to_grow(&self, len: usize, additional: usize) -> bool { |
| 80 | + additional > self.capacity().wrapping_sub(len) |
| 81 | + } |
| 82 | + |
| 83 | + /// A specialized version of `reserve()` used only by the hot and |
| 84 | + /// oft-instantiated `Vec::push()`, which does its own capacity check. |
| 85 | + #[cfg(not(no_global_oom_handling))] |
| 86 | + #[inline(never)] |
| 87 | + fn reserve_for_push(&mut self, len: usize) { |
| 88 | + handle_reserve(self.grow_amortized(len, 1)); |
| 89 | + } |
| 90 | + |
| 91 | + /// Shrinks the buffer down to the specified capacity. If the given amount |
| 92 | + /// is 0, actually completely deallocates. |
| 93 | + /// |
| 94 | + /// # Panics |
| 95 | + /// |
| 96 | + /// Panics if the given amount is *larger* than the current capacity. |
| 97 | + /// |
| 98 | + /// # Aborts |
| 99 | + /// |
| 100 | + /// Aborts on OOM. |
| 101 | + #[cfg(not(no_global_oom_handling))] |
| 102 | + fn shrink_to_fit(&mut self, cap: usize) { |
| 103 | + handle_reserve(self.shrink(cap)); |
| 104 | + } |
| 105 | + |
| 106 | + /// The same as `reserve`, but returns on errors instead of panicking or aborting. |
| 107 | + fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { |
| 108 | + if self.needs_to_grow(len, additional) { |
| 109 | + self.grow_amortized(len, additional) |
| 110 | + } else { |
| 111 | + Ok(()) |
| 112 | + } |
| 113 | + } |
| 114 | + |
| 115 | + /// Ensures that the buffer contains at least enough space to hold `len + |
| 116 | + /// additional` elements. If it doesn't already, will reallocate the |
| 117 | + /// minimum possible amount of memory necessary. Generally this will be |
| 118 | + /// exactly the amount of memory necessary, but in principle the allocator |
| 119 | + /// is free to give back more than we asked for. |
| 120 | + /// |
| 121 | + /// If `len` exceeds `self.capacity()`, this may fail to actually allocate |
| 122 | + /// the requested space. This is not really unsafe, but the unsafe code |
| 123 | + /// *you* write that relies on the behavior of this function may break. |
| 124 | + /// |
| 125 | + /// # Panics |
| 126 | + /// |
| 127 | + /// Panics if the new capacity exceeds `isize::MAX` bytes. |
| 128 | + /// |
| 129 | + /// # Aborts |
| 130 | + /// |
| 131 | + /// Aborts on OOM. |
| 132 | + #[cfg(not(no_global_oom_handling))] |
| 133 | + fn reserve_exact(&mut self, len: usize, additional: usize) { |
| 134 | + handle_reserve(self.try_reserve_exact(len, additional)); |
| 135 | + } |
| 136 | + |
| 137 | + /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting. |
| 138 | + fn try_reserve_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { |
| 139 | + if self.needs_to_grow(len, additional) { self.grow_exact(len, additional) } else { Ok(()) } |
| 140 | + } |
| 141 | + |
| 142 | + fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError>; |
| 143 | + fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError>; |
| 144 | + fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError>; |
| 145 | +} |
| 146 | + |
| 147 | +impl<T, A: Allocator> BoxStorage for Box<[mem::MaybeUninit<T>], A> { |
| 148 | + const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 { |
| 149 | + 8 |
| 150 | + } else if mem::size_of::<T>() <= 1024 { |
| 151 | + 4 |
| 152 | + } else { |
| 153 | + 1 |
| 154 | + }; |
| 155 | + |
| 156 | + #[inline(always)] |
| 157 | + fn capacity(&self) -> usize { |
| 158 | + if mem::size_of::<T>() == 0 { |
| 159 | + usize::MAX |
| 160 | + } else { |
| 161 | + unsafe { |
| 162 | + let ptr: *const usize = core::mem::transmute(self); |
| 163 | + *ptr.add(1) |
| 164 | + } |
| 165 | + } |
| 166 | + } |
| 167 | + |
| 168 | + // This method is usually instantiated many times. So we want it to be as |
| 169 | + // small as possible, to improve compile times. But we also want as much of |
| 170 | + // its contents to be statically computable as possible, to make the |
| 171 | + // generated code run faster. Therefore, this method is carefully written |
| 172 | + // so that all of the code that depends on `T` is within it, while as much |
| 173 | + // of the code that doesn't depend on `T` as possible is in functions that |
| 174 | + // are non-generic over `T`. |
| 175 | + fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { |
| 176 | + // This is ensured by the calling contexts. |
| 177 | + debug_assert!(additional > 0); |
| 178 | + |
| 179 | + if mem::size_of::<T>() == 0 { |
| 180 | + // Since we return a capacity of `usize::MAX` when `elem_size` is |
| 181 | + // 0, getting to here necessarily means the boxed-slice is overfull. |
| 182 | + return Err(CapacityOverflow.into()); |
| 183 | + } |
| 184 | + |
| 185 | + // Nothing we can really do about these checks, sadly. |
| 186 | + let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?; |
| 187 | + |
| 188 | + // This guarantees exponential growth. The doubling cannot overflow |
| 189 | + // because `cap <= isize::MAX` and the type of `cap` is `usize`. |
| 190 | + let cap = self.len(); |
| 191 | + let cap = cmp::max(cap * 2, required_cap); |
| 192 | + let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap); |
| 193 | + |
| 194 | + replace(self, |current_memory, alloc| { |
| 195 | + let new_layout = Layout::array::<T>(cap); |
| 196 | + // `finish_grow` is non-generic over `T`. |
| 197 | + let ptr = finish_grow(new_layout, current_memory, alloc)?; |
| 198 | + Ok(Some((ptr, cap))) |
| 199 | + }) |
| 200 | + } |
| 201 | + |
| 202 | + // The constraints on this method are much the same as those on |
| 203 | + // `grow_amortized`, but this method is usually instantiated less often so |
| 204 | + // it's less critical. |
| 205 | + fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { |
| 206 | + if mem::size_of::<T>() == 0 { |
| 207 | + // Since we return a capacity of `usize::MAX` when the type size is |
| 208 | + // 0, getting to here necessarily means the boxed-slice is overfull. |
| 209 | + return Err(CapacityOverflow.into()); |
| 210 | + } |
| 211 | + let cap = len.checked_add(additional).ok_or(CapacityOverflow)?; |
| 212 | + |
| 213 | + replace(self, |current_memory, alloc| { |
| 214 | + let new_layout = Layout::array::<T>(cap); |
| 215 | + // `finish_grow` is non-generic over `T`. |
| 216 | + let ptr = finish_grow(new_layout, current_memory, alloc)?; |
| 217 | + Ok(Some((ptr, cap))) |
| 218 | + }) |
| 219 | + } |
| 220 | + |
| 221 | + fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> { |
| 222 | + assert!(cap <= self.capacity(), "Tried to shrink to a larger capacity"); |
| 223 | + replace(self, |current_memory, alloc| { |
| 224 | + let (ptr, layout) = if let Some(mem) = current_memory { mem } else { return Ok(None) }; |
| 225 | + |
| 226 | + let ptr = unsafe { |
| 227 | + // `Layout::array` cannot overflow here because it would have |
| 228 | + // overflowed earlier when capacity was larger. |
| 229 | + let new_layout = Layout::array::<T>(cap).unwrap_unchecked(); |
| 230 | + alloc |
| 231 | + .shrink(ptr, layout, new_layout) |
| 232 | + .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })? |
| 233 | + }; |
| 234 | + Ok(Some((ptr, cap))) |
| 235 | + }) |
| 236 | + } |
| 237 | +} |
| 238 | + |
| 239 | +pub(crate) unsafe fn storage_from_raw_parts_in<T, A: Allocator>( |
| 240 | + ptr: *mut T, |
| 241 | + len: usize, |
| 242 | + alloc: A, |
| 243 | +) -> Box<[MaybeUninit<T>], A> { |
| 244 | + unsafe { |
| 245 | + let raw = core::slice::from_raw_parts_mut(ptr.cast(), len); |
| 246 | + Box::from_raw_in(raw, alloc) |
| 247 | + } |
| 248 | +} |
| 249 | + |
| 250 | +fn replace<T, A: Allocator>( |
| 251 | + dst: &mut Box<[mem::MaybeUninit<T>], A>, |
| 252 | + f: impl FnOnce( |
| 253 | + Option<(NonNull<u8>, Layout)>, |
| 254 | + &A, |
| 255 | + ) -> Result<Option<(NonNull<[u8]>, usize)>, TryReserveError>, |
| 256 | +) -> Result<(), TryReserveError> { |
| 257 | + unsafe { |
| 258 | + let (old, alloc) = Box::into_raw_with_allocator(core::ptr::read(dst)); |
| 259 | + let current_memory = slice_layout(&mut *old); |
| 260 | + match f(current_memory, &alloc) { |
| 261 | + Ok(None) => Ok(()), |
| 262 | + Ok(Some((ptr, len))) => { |
| 263 | + // hack because we don't have access to box here :() |
| 264 | + |
| 265 | + // Create a raw pointer slice to the new allocation |
| 266 | + let raw = |
| 267 | + core::ptr::slice_from_raw_parts_mut(ptr.as_ptr().cast::<MaybeUninit<T>>(), len); |
| 268 | + |
| 269 | + // Create a new Box from our new allocation |
| 270 | + let this = Box::from_raw_in(raw, alloc); |
| 271 | + core::ptr::write(dst, this); |
| 272 | + Ok(()) |
| 273 | + } |
| 274 | + Err(err) => Err(err), |
| 275 | + } |
| 276 | + } |
| 277 | +} |
| 278 | + |
| 279 | +fn slice_layout<T>(slice: &mut [MaybeUninit<T>]) -> Option<(NonNull<u8>, Layout)> { |
| 280 | + if mem::size_of::<T>() == 0 || slice.len() == 0 { |
| 281 | + None |
| 282 | + } else { |
| 283 | + // We have an allocated chunk of memory, so we can bypass runtime |
| 284 | + // checks to get our current layout. |
| 285 | + unsafe { |
| 286 | + let layout = Layout::array::<T>(slice.len()).unwrap_unchecked(); |
| 287 | + Some((NonNull::new_unchecked(slice.as_mut_ptr().cast()), layout)) |
| 288 | + } |
| 289 | + } |
| 290 | +} |
| 291 | + |
| 292 | +// This function is outside `RawVec` to minimize compile times. See the comment |
| 293 | +// above `RawVec::grow_amortized` for details. (The `A` parameter isn't |
| 294 | +// significant, because the number of different `A` types seen in practice is |
| 295 | +// much smaller than the number of `T` types.) |
| 296 | +#[inline(never)] |
| 297 | +fn finish_grow<A>( |
| 298 | + new_layout: Result<Layout, LayoutError>, |
| 299 | + current_memory: Option<(NonNull<u8>, Layout)>, |
| 300 | + alloc: &A, |
| 301 | +) -> Result<NonNull<[u8]>, TryReserveError> |
| 302 | +where |
| 303 | + A: Allocator, |
| 304 | +{ |
| 305 | + // Check for the error here to minimize the size of `RawVec::grow_*`. |
| 306 | + let new_layout = new_layout.map_err(|_| CapacityOverflow)?; |
| 307 | + |
| 308 | + alloc_guard(new_layout.size())?; |
| 309 | + |
| 310 | + let memory = if let Some((ptr, old_layout)) = current_memory { |
| 311 | + debug_assert_eq!(old_layout.align(), new_layout.align()); |
| 312 | + unsafe { |
| 313 | + // The allocator checks for alignment equality |
| 314 | + intrinsics::assume(old_layout.align() == new_layout.align()); |
| 315 | + alloc.grow(ptr, old_layout, new_layout) |
| 316 | + } |
| 317 | + } else { |
| 318 | + alloc.allocate(new_layout) |
| 319 | + }; |
| 320 | + |
| 321 | + memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into()) |
| 322 | +} |
| 323 | + |
| 324 | +// Central function for reserve error handling. |
| 325 | +#[cfg(not(no_global_oom_handling))] |
| 326 | +#[inline] |
| 327 | +fn handle_reserve(result: Result<(), TryReserveError>) { |
| 328 | + match result.map_err(|e| e.kind()) { |
| 329 | + Err(CapacityOverflow) => capacity_overflow(), |
| 330 | + Err(AllocError { layout, .. }) => handle_alloc_error(layout), |
| 331 | + Ok(()) => { /* yay */ } |
| 332 | + } |
| 333 | +} |
| 334 | + |
| 335 | +// We need to guarantee the following: |
| 336 | +// * We don't ever allocate `> isize::MAX` byte-size objects. |
| 337 | +// * We don't overflow `usize::MAX` and actually allocate too little. |
| 338 | +// |
| 339 | +// On 64-bit we just need to check for overflow since trying to allocate |
| 340 | +// `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add |
| 341 | +// an extra guard for this in case we're running on a platform which can use |
| 342 | +// all 4GB in user-space, e.g., PAE or x32. |
| 343 | + |
| 344 | +#[inline] |
| 345 | +pub(crate) fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> { |
| 346 | + if usize::BITS < 64 && alloc_size > isize::MAX as usize { |
| 347 | + Err(CapacityOverflow.into()) |
| 348 | + } else { |
| 349 | + Ok(()) |
| 350 | + } |
| 351 | +} |
| 352 | + |
| 353 | +// One central function responsible for reporting capacity overflows. This'll |
| 354 | +// ensure that the code generation related to these panics is minimal as there's |
| 355 | +// only one location which panics rather than a bunch throughout the module. |
| 356 | +#[cfg(not(no_global_oom_handling))] |
| 357 | +pub(crate) fn capacity_overflow() -> ! { |
| 358 | + panic!("capacity overflow"); |
| 359 | +} |
| 360 | + |
| 361 | +#[cfg(not(no_global_oom_handling))] |
| 362 | +pub(crate) fn allocate_in<T, A: Allocator>( |
| 363 | + capacity: usize, |
| 364 | + init: AllocInit, |
| 365 | + alloc: A, |
| 366 | +) -> Box<[mem::MaybeUninit<T>], A> { |
| 367 | + // Don't allocate here because `Drop` will not deallocate when `capacity` is 0. |
| 368 | + if capacity == 0 { |
| 369 | + Box::empty_in(alloc) |
| 370 | + } else if mem::size_of::<T>() == 0 { |
| 371 | + unsafe { |
| 372 | + storage_from_raw_parts_in(core::ptr::Unique::dangling().as_ptr(), capacity, alloc) |
| 373 | + } |
| 374 | + } else { |
| 375 | + // We avoid `unwrap_or_else` here because it bloats the amount of |
| 376 | + // LLVM IR generated. |
| 377 | + let layout = match Layout::array::<T>(capacity) { |
| 378 | + Ok(layout) => layout, |
| 379 | + Err(_) => capacity_overflow(), |
| 380 | + }; |
| 381 | + match alloc_guard(layout.size()) { |
| 382 | + Ok(_) => {} |
| 383 | + Err(_) => capacity_overflow(), |
| 384 | + } |
| 385 | + let result = match init { |
| 386 | + AllocInit::Uninitialized => alloc.allocate(layout), |
| 387 | + AllocInit::Zeroed => alloc.allocate_zeroed(layout), |
| 388 | + }; |
| 389 | + let ptr = match result { |
| 390 | + Ok(ptr) => ptr, |
| 391 | + Err(_) => handle_alloc_error(layout), |
| 392 | + }; |
| 393 | + |
| 394 | + // Allocators currently return a `NonNull<[u8]>` whose length |
| 395 | + // matches the size requested. If that ever changes, the capacity |
| 396 | + // here should change to `ptr.len() / mem::size_of::<T>()`. |
| 397 | + unsafe { storage_from_raw_parts_in(ptr.as_ptr().cast(), capacity, alloc) } |
| 398 | + } |
| 399 | +} |
0 commit comments