@@ -1415,3 +1415,380 @@ impl f128 {
1415
1415
intrinsics:: frem_algebraic ( self , rhs)
1416
1416
}
1417
1417
}
1418
+
1419
+ // Functions in this module fall into `core_float_math`
1420
+ // FIXME(f16_f128): all doctests must be gated to platforms that have `long double` === `_Float128`
1421
+ // due to https://github.com/llvm/llvm-project/issues/44744. aarch64 linux matches this.
1422
+ // #[unstable(feature = "core_float_math", issue = "137578")]
1423
+ #[ cfg( not( test) ) ]
1424
+ impl f128 {
1425
+ /// Returns the largest integer less than or equal to `self`.
1426
+ ///
1427
+ /// This function always returns the precise result.
1428
+ ///
1429
+ /// # Examples
1430
+ ///
1431
+ /// ```
1432
+ /// #![feature(f128)]
1433
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1434
+ ///
1435
+ /// let f = 3.7_f128;
1436
+ /// let g = 3.0_f128;
1437
+ /// let h = -3.7_f128;
1438
+ ///
1439
+ /// assert_eq!(f.floor(), 3.0);
1440
+ /// assert_eq!(g.floor(), 3.0);
1441
+ /// assert_eq!(h.floor(), -4.0);
1442
+ /// # }
1443
+ /// ```
1444
+ #[ inline]
1445
+ #[ rustc_allow_incoherent_impl]
1446
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1447
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1448
+ pub fn floor ( self ) -> f128 {
1449
+ // SAFETY: intrinsic with no preconditions
1450
+ unsafe { intrinsics:: floorf128 ( self ) }
1451
+ }
1452
+
1453
+ /// Returns the smallest integer greater than or equal to `self`.
1454
+ ///
1455
+ /// This function always returns the precise result.
1456
+ ///
1457
+ /// # Examples
1458
+ ///
1459
+ /// ```
1460
+ /// #![feature(f128)]
1461
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1462
+ ///
1463
+ /// let f = 3.01_f128;
1464
+ /// let g = 4.0_f128;
1465
+ ///
1466
+ /// assert_eq!(f.ceil(), 4.0);
1467
+ /// assert_eq!(g.ceil(), 4.0);
1468
+ /// # }
1469
+ /// ```
1470
+ #[ inline]
1471
+ #[ doc( alias = "ceiling" ) ]
1472
+ #[ rustc_allow_incoherent_impl]
1473
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1474
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1475
+ pub fn ceil ( self ) -> f128 {
1476
+ // SAFETY: intrinsic with no preconditions
1477
+ unsafe { intrinsics:: ceilf128 ( self ) }
1478
+ }
1479
+
1480
+ /// Returns the nearest integer to `self`. If a value is half-way between two
1481
+ /// integers, round away from `0.0`.
1482
+ ///
1483
+ /// This function always returns the precise result.
1484
+ ///
1485
+ /// # Examples
1486
+ ///
1487
+ /// ```
1488
+ /// #![feature(f128)]
1489
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1490
+ ///
1491
+ /// let f = 3.3_f128;
1492
+ /// let g = -3.3_f128;
1493
+ /// let h = -3.7_f128;
1494
+ /// let i = 3.5_f128;
1495
+ /// let j = 4.5_f128;
1496
+ ///
1497
+ /// assert_eq!(f.round(), 3.0);
1498
+ /// assert_eq!(g.round(), -3.0);
1499
+ /// assert_eq!(h.round(), -4.0);
1500
+ /// assert_eq!(i.round(), 4.0);
1501
+ /// assert_eq!(j.round(), 5.0);
1502
+ /// # }
1503
+ /// ```
1504
+ #[ inline]
1505
+ #[ rustc_allow_incoherent_impl]
1506
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1507
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1508
+ pub fn round ( self ) -> f128 {
1509
+ // SAFETY: intrinsic with no preconditions
1510
+ unsafe { intrinsics:: roundf128 ( self ) }
1511
+ }
1512
+
1513
+ /// Returns the nearest integer to a number. Rounds half-way cases to the number
1514
+ /// with an even least significant digit.
1515
+ ///
1516
+ /// This function always returns the precise result.
1517
+ ///
1518
+ /// # Examples
1519
+ ///
1520
+ /// ```
1521
+ /// #![feature(f128)]
1522
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1523
+ ///
1524
+ /// let f = 3.3_f128;
1525
+ /// let g = -3.3_f128;
1526
+ /// let h = 3.5_f128;
1527
+ /// let i = 4.5_f128;
1528
+ ///
1529
+ /// assert_eq!(f.round_ties_even(), 3.0);
1530
+ /// assert_eq!(g.round_ties_even(), -3.0);
1531
+ /// assert_eq!(h.round_ties_even(), 4.0);
1532
+ /// assert_eq!(i.round_ties_even(), 4.0);
1533
+ /// # }
1534
+ /// ```
1535
+ #[ inline]
1536
+ #[ rustc_allow_incoherent_impl]
1537
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1538
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1539
+ pub fn round_ties_even ( self ) -> f128 {
1540
+ intrinsics:: round_ties_even_f128 ( self )
1541
+ }
1542
+
1543
+ /// Returns the integer part of `self`.
1544
+ /// This means that non-integer numbers are always truncated towards zero.
1545
+ ///
1546
+ /// This function always returns the precise result.
1547
+ ///
1548
+ /// # Examples
1549
+ ///
1550
+ /// ```
1551
+ /// #![feature(f128)]
1552
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1553
+ ///
1554
+ /// let f = 3.7_f128;
1555
+ /// let g = 3.0_f128;
1556
+ /// let h = -3.7_f128;
1557
+ ///
1558
+ /// assert_eq!(f.trunc(), 3.0);
1559
+ /// assert_eq!(g.trunc(), 3.0);
1560
+ /// assert_eq!(h.trunc(), -3.0);
1561
+ /// # }
1562
+ /// ```
1563
+ #[ inline]
1564
+ #[ doc( alias = "truncate" ) ]
1565
+ #[ rustc_allow_incoherent_impl]
1566
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1567
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1568
+ pub fn trunc ( self ) -> f128 {
1569
+ // SAFETY: intrinsic with no preconditions
1570
+ unsafe { intrinsics:: truncf128 ( self ) }
1571
+ }
1572
+
1573
+ /// Returns the fractional part of `self`.
1574
+ ///
1575
+ /// This function always returns the precise result.
1576
+ ///
1577
+ /// # Examples
1578
+ ///
1579
+ /// ```
1580
+ /// #![feature(f128)]
1581
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1582
+ ///
1583
+ /// let x = 3.6_f128;
1584
+ /// let y = -3.6_f128;
1585
+ /// let abs_difference_x = (x.fract() - 0.6).abs();
1586
+ /// let abs_difference_y = (y.fract() - (-0.6)).abs();
1587
+ ///
1588
+ /// assert!(abs_difference_x <= f128::EPSILON);
1589
+ /// assert!(abs_difference_y <= f128::EPSILON);
1590
+ /// # }
1591
+ /// ```
1592
+ #[ inline]
1593
+ #[ rustc_allow_incoherent_impl]
1594
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1595
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1596
+ pub fn fract ( self ) -> f128 {
1597
+ self - self . trunc ( )
1598
+ }
1599
+
1600
+ /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
1601
+ /// error, yielding a more accurate result than an unfused multiply-add.
1602
+ ///
1603
+ /// Using `mul_add` *may* be more performant than an unfused multiply-add if
1604
+ /// the target architecture has a dedicated `fma` CPU instruction. However,
1605
+ /// this is not always true, and will be heavily dependant on designing
1606
+ /// algorithms with specific target hardware in mind.
1607
+ ///
1608
+ /// # Precision
1609
+ ///
1610
+ /// The result of this operation is guaranteed to be the rounded
1611
+ /// infinite-precision result. It is specified by IEEE 754 as
1612
+ /// `fusedMultiplyAdd` and guaranteed not to change.
1613
+ ///
1614
+ /// # Examples
1615
+ ///
1616
+ /// ```
1617
+ /// #![feature(f128)]
1618
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1619
+ ///
1620
+ /// let m = 10.0_f128;
1621
+ /// let x = 4.0_f128;
1622
+ /// let b = 60.0_f128;
1623
+ ///
1624
+ /// assert_eq!(m.mul_add(x, b), 100.0);
1625
+ /// assert_eq!(m * x + b, 100.0);
1626
+ ///
1627
+ /// let one_plus_eps = 1.0_f128 + f128::EPSILON;
1628
+ /// let one_minus_eps = 1.0_f128 - f128::EPSILON;
1629
+ /// let minus_one = -1.0_f128;
1630
+ ///
1631
+ /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1632
+ /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f128::EPSILON * f128::EPSILON);
1633
+ /// // Different rounding with the non-fused multiply and add.
1634
+ /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1635
+ /// # }
1636
+ /// ```
1637
+ #[ inline]
1638
+ #[ rustc_allow_incoherent_impl]
1639
+ #[ doc( alias = "fmaf128" , alias = "fusedMultiplyAdd" ) ]
1640
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1641
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1642
+ pub fn mul_add ( self , a : f128 , b : f128 ) -> f128 {
1643
+ // SAFETY: intrinsic with no preconditions
1644
+ unsafe { intrinsics:: fmaf128 ( self , a, b) }
1645
+ }
1646
+
1647
+ /// Calculates Euclidean division, the matching method for `rem_euclid`.
1648
+ ///
1649
+ /// This computes the integer `n` such that
1650
+ /// `self = n * rhs + self.rem_euclid(rhs)`.
1651
+ /// In other words, the result is `self / rhs` rounded to the integer `n`
1652
+ /// such that `self >= n * rhs`.
1653
+ ///
1654
+ /// # Precision
1655
+ ///
1656
+ /// The result of this operation is guaranteed to be the rounded
1657
+ /// infinite-precision result.
1658
+ ///
1659
+ /// # Examples
1660
+ ///
1661
+ /// ```
1662
+ /// #![feature(f128)]
1663
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1664
+ ///
1665
+ /// let a: f128 = 7.0;
1666
+ /// let b = 4.0;
1667
+ /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
1668
+ /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
1669
+ /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
1670
+ /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
1671
+ /// # }
1672
+ /// ```
1673
+ #[ inline]
1674
+ #[ rustc_allow_incoherent_impl]
1675
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1676
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1677
+ pub fn div_euclid ( self , rhs : f128 ) -> f128 {
1678
+ let q = ( self / rhs) . trunc ( ) ;
1679
+ if self % rhs < 0.0 {
1680
+ return if rhs > 0.0 { q - 1.0 } else { q + 1.0 } ;
1681
+ }
1682
+ q
1683
+ }
1684
+
1685
+ /// Calculates the least nonnegative remainder of `self (mod rhs)`.
1686
+ ///
1687
+ /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
1688
+ /// most cases. However, due to a floating point round-off error it can
1689
+ /// result in `r == rhs.abs()`, violating the mathematical definition, if
1690
+ /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
1691
+ /// This result is not an element of the function's codomain, but it is the
1692
+ /// closest floating point number in the real numbers and thus fulfills the
1693
+ /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
1694
+ /// approximately.
1695
+ ///
1696
+ /// # Precision
1697
+ ///
1698
+ /// The result of this operation is guaranteed to be the rounded
1699
+ /// infinite-precision result.
1700
+ ///
1701
+ /// # Examples
1702
+ ///
1703
+ /// ```
1704
+ /// #![feature(f128)]
1705
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1706
+ ///
1707
+ /// let a: f128 = 7.0;
1708
+ /// let b = 4.0;
1709
+ /// assert_eq!(a.rem_euclid(b), 3.0);
1710
+ /// assert_eq!((-a).rem_euclid(b), 1.0);
1711
+ /// assert_eq!(a.rem_euclid(-b), 3.0);
1712
+ /// assert_eq!((-a).rem_euclid(-b), 1.0);
1713
+ /// // limitation due to round-off error
1714
+ /// assert!((-f128::EPSILON).rem_euclid(3.0) != 0.0);
1715
+ /// # }
1716
+ /// ```
1717
+ #[ inline]
1718
+ #[ rustc_allow_incoherent_impl]
1719
+ #[ doc( alias = "modulo" , alias = "mod" ) ]
1720
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1721
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1722
+ pub fn rem_euclid ( self , rhs : f128 ) -> f128 {
1723
+ let r = self % rhs;
1724
+ if r < 0.0 { r + rhs. abs ( ) } else { r }
1725
+ }
1726
+
1727
+ /// Raises a number to an integer power.
1728
+ ///
1729
+ /// Using this function is generally faster than using `powf`.
1730
+ /// It might have a different sequence of rounding operations than `powf`,
1731
+ /// so the results are not guaranteed to agree.
1732
+ ///
1733
+ /// # Unspecified precision
1734
+ ///
1735
+ /// The precision of this function is non-deterministic. This means it varies by platform,
1736
+ /// Rust version, and can even differ within the same execution from one invocation to the next.
1737
+ ///
1738
+ /// # Examples
1739
+ ///
1740
+ /// ```
1741
+ /// #![feature(f128)]
1742
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1743
+ ///
1744
+ /// let x = 2.0_f128;
1745
+ /// let abs_difference = (x.powi(2) - (x * x)).abs();
1746
+ /// assert!(abs_difference <= f128::EPSILON);
1747
+ ///
1748
+ /// assert_eq!(f128::powi(f128::NAN, 0), 1.0);
1749
+ /// # }
1750
+ /// ```
1751
+ #[ inline]
1752
+ #[ rustc_allow_incoherent_impl]
1753
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1754
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1755
+ pub fn powi ( self , n : i32 ) -> f128 {
1756
+ // SAFETY: intrinsic with no preconditions
1757
+ unsafe { intrinsics:: powif128 ( self , n) }
1758
+ }
1759
+
1760
+ /// Returns the square root of a number.
1761
+ ///
1762
+ /// Returns NaN if `self` is a negative number other than `-0.0`.
1763
+ ///
1764
+ /// # Precision
1765
+ ///
1766
+ /// The result of this operation is guaranteed to be the rounded
1767
+ /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
1768
+ /// and guaranteed not to change.
1769
+ ///
1770
+ /// # Examples
1771
+ ///
1772
+ /// ```
1773
+ /// #![feature(f128)]
1774
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1775
+ ///
1776
+ /// let positive = 4.0_f128;
1777
+ /// let negative = -4.0_f128;
1778
+ /// let negative_zero = -0.0_f128;
1779
+ ///
1780
+ /// assert_eq!(positive.sqrt(), 2.0);
1781
+ /// assert!(negative.sqrt().is_nan());
1782
+ /// assert!(negative_zero.sqrt() == negative_zero);
1783
+ /// # }
1784
+ /// ```
1785
+ #[ inline]
1786
+ #[ doc( alias = "squareRoot" ) ]
1787
+ #[ rustc_allow_incoherent_impl]
1788
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1789
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1790
+ pub fn sqrt ( self ) -> f128 {
1791
+ // SAFETY: intrinsic with no preconditions
1792
+ unsafe { intrinsics:: sqrtf128 ( self ) }
1793
+ }
1794
+ }
0 commit comments