-
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathlib.rs
2022 lines (1860 loc) · 71 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! A library that allows managing MBR partition tables.
//!
//! ## Features
//!
//! * Create primary partitions and logical volumes
//! * Delete primary partitions and logical volumes
//! * Automatically generate logical volume's EBR (or can be provided manually)
//! * If the disk geometry is set, the partition CHS addresses will be calculated
//! automatically when writing to disk
//!
//! ## Examples
//!
//! ### Read all the partitions of a disk
//!
//! ```rust
//! let mut f = std::fs::File::open("tests/fixtures/disk1.img")
//! .expect("could not open disk");
//! let mbr = mbrman::MBR::read_from(&mut f, 512)
//! .expect("could not find MBR");
//!
//! println!("Disk signature: {:?}", mbr.header.disk_signature);
//!
//! for (i, p) in mbr.iter() {
//! // NOTE: The first four partitions are always provided by iter()
//! if p.is_used() {
//! println!("Partition #{}: type = {:?}, size = {} bytes, starting lba = {}",
//! i,
//! p.sys,
//! p.sectors * mbr.sector_size,
//! p.starting_lba);
//! }
//! }
//! ```
//!
//! ### Create and delete primary partitions
//!
//! ```rust
//! let mut f = std::fs::File::open("tests/fixtures/disk1.img")
//! .expect("could not open disk");
//! let mut mbr = mbrman::MBR::read_from(&mut f, 512)
//! .expect("could not find MBR");
//!
//! let free_partition_number = mbr.iter().find(|(i, p)| p.is_unused()).map(|(i, _)| i)
//! .expect("no more places available");
//! let sectors = mbr.get_maximum_partition_size()
//! .expect("no more space available");
//! let starting_lba = mbr.find_optimal_place(sectors)
//! .expect("could not find a place to put the partition");
//!
//! mbr[free_partition_number] = mbrman::MBRPartitionEntry {
//! boot: mbrman::BOOT_INACTIVE, // boot flag
//! first_chs: mbrman::CHS::empty(), // first CHS address (only useful for old computers)
//! sys: 0x83, // Linux filesystem
//! last_chs: mbrman::CHS::empty(), // last CHS address (only useful for old computers)
//! starting_lba, // the sector where the partition starts
//! sectors, // the number of sectors in that partition
//! };
//!
//! mbr[free_partition_number] = mbrman::MBRPartitionEntry::empty();
//!
//! // NOTE: no modification is committed to the disk until we call mbr.write_into()
//! ```
//!
//! ### Create a new partition table from an empty disk
//!
//! ```rust
//! let ss = 512; // sector size
//! let data = vec![0; 100 * ss as usize];
//! let mut cur = std::io::Cursor::new(data);
//!
//! let mut mbr = mbrman::MBR::new_from(&mut cur, ss as u32, [0xff; 4])
//! .expect("could not create partition table");
//!
//! // NOTE: commit the change to the in-memory buffer
//! mbr.write_into(&mut cur);
//! ```
//!
//! ### Add a new logical volume to the disk
//!
//! ```rust
//! let ss = 512; // sector size
//! let data = vec![0; 100 * ss as usize];
//! let mut cur = std::io::Cursor::new(data);
//!
//! let mut mbr = mbrman::MBR::new_from(&mut cur, ss as u32, [0xff; 4])
//! .expect("could not create partition table");
//!
//! mbr[1] = mbrman::MBRPartitionEntry {
//! boot: mbrman::BOOT_INACTIVE, // boot flag
//! first_chs: mbrman::CHS::empty(), // first CHS address (only useful for old computers)
//! sys: 0x0f, // extended partition with LBA
//! last_chs: mbrman::CHS::empty(), // last CHS address (only useful for old computers)
//! starting_lba: 1, // the sector where the partition starts
//! sectors: mbr.disk_size - 1, // the number of sectors in that partition
//! };
//!
//! // this helper function will do all the hard work for you
//! // here it creates a logical volume with Linux filesystem that occupies the entire disk
//! // NOTE: you will lose 1 sector because it is used by the EBR
//! mbr.push(0x83, 1, mbr.disk_size - 1);
//!
//! // NOTE: commit the change to the in-memory buffer
//! mbr.write_into(&mut cur);
//! ```
//!
//! ### Add a new logical volume manually to the disk
//!
//! This is useful only if you need to specify exactly where goes the EBR and the partition itself.
//!
//! ```rust
//! let ss = 512; // sector size
//! let data = vec![0; 100 * ss as usize];
//! let mut cur = std::io::Cursor::new(data);
//!
//! let mut mbr = mbrman::MBR::new_from(&mut cur, ss as u32, [0xff; 4])
//! .expect("could not create partition table");
//!
//! mbr[1] = mbrman::MBRPartitionEntry {
//! boot: mbrman::BOOT_INACTIVE, // boot flag
//! first_chs: mbrman::CHS::empty(), // first CHS address (only useful for old computers)
//! sys: 0x0f, // extended partition with LBA
//! last_chs: mbrman::CHS::empty(), // last CHS address (only useful for old computers)
//! starting_lba: 1, // the sector where the partition starts
//! sectors: mbr.disk_size - 1, // the number of sectors in that partition
//! };
//!
//! // NOTE: mbrman won't check the consistency of the partition you have created manually
//! mbr.logical_partitions.push(
//! mbrman::LogicalPartition {
//! // this is the actual partition entry for the logical volume
//! partition: mbrman::MBRPartitionEntry {
//! boot: mbrman::BOOT_INACTIVE,
//! first_chs: mbrman::CHS::empty(),
//! sys: 0x83,
//! last_chs: mbrman::CHS::empty(),
//! starting_lba: 2, // the sector index 1 is used by the EBR
//! sectors: mbr.disk_size - 2,
//! },
//! // this is the absolute LBA address of the EBR
//! absolute_ebr_lba: 1,
//! // the number of sectors in the first EBR is never known
//! ebr_sectors: None,
//! // empty boot sector in the EBR
//! bootstrap_code: [0; 446],
//! // this is the absolute CHS address of the EBR (only used by old computers)
//! ebr_first_chs: mbrman::CHS::empty(), // only for old computers
//! // this is the absolute CHS address of the last EBR (only used by old computers)
//! // NOTE: this is not know the first EBR
//! ebr_last_chs: None,
//! }
//! );
//!
//! // NOTE: commit the change to the in-memory buffer
//! mbr.write_into(&mut cur);
//! ```
#![deny(missing_docs)]
use bitvec::prelude::*;
use serde::de::{SeqAccess, Visitor};
use serde::ser::SerializeTuple;
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use serde_big_array::BigArray;
use std::io::{Read, Seek, SeekFrom, Write};
use std::iter::{once, repeat};
use std::ops::{Index, IndexMut};
use bincode::config::legacy;
use bincode::error::{DecodeError, EncodeError};
use bincode::serde::{decode_from_std_read, encode_into_std_write};
use thiserror::Error;
const DEFAULT_ALIGN: u32 = 2048;
const MAX_ALIGN: u32 = 16384;
const FIRST_USABLE_LBA: u32 = 1;
const BOOT_SIGNATURE: [u8; 2] = [0x55, 0xaa];
/// Boot flag for a bootable partition
pub const BOOT_ACTIVE: u8 = 0x80;
/// Boot flag for a non-bootable partition
pub const BOOT_INACTIVE: u8 = 0x00;
/// The result of reading, writing or managing a MBR.
pub type Result<T> = std::result::Result<T, Error>;
/// An error
#[derive(Debug, Error)]
#[non_exhaustive]
pub enum Error {
/// The CHS address requested cannot be represented in CHS
///
/// # Remark
///
/// There is a hard limit around 8GB for CHS addressing.
#[error("exceeded the maximum limit of CHS")]
LBAExceedsMaximumCHS,
/// The CHS address requested exceeds the number of cylinders in the disk
#[error("exceeded the maximum number of cylinders on disk")]
LBAExceedsMaximumCylinders,
/// Deserialization errors.
#[error("deserialization failed")]
Deserialize(#[from] DecodeError),
/// Serialization errors.
#[error("Serialization failed")]
Serialize(#[from] EncodeError),
/// I/O errors.
#[error("generic I/O error")]
Io(#[from] std::io::Error),
/// Inconsistent extended boot record
#[error("inconsistent extended boot record")]
InconsistentEBR,
/// No extended partition
#[error("no extended partition")]
NoExtendedPartition,
/// The EBR starts before the extended partition
#[error("EBR starts before the extended partition")]
EBRStartsBeforeExtendedPartition,
/// The EBR starts too close to the extended partition
#[error("EBR starts too close to the end of the extended partition")]
EBRStartsTooCloseToTheEndOfExtendedPartition,
/// The EBR ends after the extended partition
#[error("EBR ends after the extended partition")]
EBREndsAfterExtendedPartition,
/// Not enough sectors to create a logical partition
#[error("not enough sectors to create a logical partition")]
NotEnoughSectorsToCreateLogicalPartition,
/// An operation that required to find a partition, was unable to find that partition.
#[error("partition not found")]
PartitionNotFound,
/// An error that occurs when there is not enough space left on the table to continue.
#[error("no space left")]
NoSpaceLeft,
/// MBR doesn't have the expected signature value
#[error("invalid MBR signature")]
InvalidSignature,
/// Partition has invalid boot flag
#[error("partition has invalid boot flag")]
InvalidBootFlag,
}
/// A type representing a MBR partition table including its partition, the sector size of the disk
/// and the alignment of the partitions to the sectors.
///
/// # Examples:
/// Read an existing MBR on a reader and list its partitions:
/// ```
/// let mut f = std::fs::File::open("tests/fixtures/disk1.img")
/// .expect("could not open disk");
/// let mbr = mbrman::MBR::read_from(&mut f, 512)
/// .expect("could not find MBR");
///
/// println!("Disk signature: {:?}", mbr.header.disk_signature);
///
/// for (i, p) in mbr.iter() {
/// if p.is_used() {
/// println!("Partition #{}: type = {:?}, size = {} bytes, starting lba = {}",
/// i,
/// p.sys,
/// p.sectors * mbr.sector_size,
/// p.starting_lba);
/// }
/// }
/// ```
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct MBR {
/// Sector size of the disk.
///
/// You should not change this, otherwise the starting locations of your partitions will be
/// different in bytes.
pub sector_size: u32,
/// MBR partition header (disk GUID, first/last usable LBA, etc...)
pub header: MBRHeader,
/// A vector with all the logical partitions. You can push new ones (even empty ones)
pub logical_partitions: Vec<LogicalPartition>,
/// Partitions alignment (in sectors)
///
/// This field change the behavior of the methods `get_maximum_partition_size()`,
/// `find_free_sectors()`, `find_first_place()`, `find_last_place()` and `find_optimal_place()`
/// so they return only values aligned to the alignment.
///
/// # Panics
/// The value must be greater than 0, otherwise you will encounter divisions by zero.
pub align: u32,
/// Disk geometry: number of cylinders
pub cylinders: u16,
/// Disk geometry: number of heads
pub heads: u8,
/// Disk geometry: number of sectors
pub sectors: u8,
/// Disk size in sectors
pub disk_size: u32,
}
impl MBR {
/// Get an iterator over the partition entries and their index. The
/// index always starts at 1.
pub fn iter(&self) -> impl Iterator<Item = (usize, &MBRPartitionEntry)> {
self.header.iter().chain(
self.logical_partitions
.iter()
.map(|x| &x.partition)
.enumerate()
.map(|(i, x)| (i + 5, x)),
)
}
/// Get a mutable iterator over the partition entries and their
/// index. The index always starts at 1.
pub fn iter_mut(&mut self) -> impl Iterator<Item = (usize, &mut MBRPartitionEntry)> {
let mut partitions: Vec<_> = vec![
&mut self.header.partition_1,
&mut self.header.partition_2,
&mut self.header.partition_3,
&mut self.header.partition_4,
];
partitions.extend(self.logical_partitions.iter_mut().map(|x| &mut x.partition));
partitions.into_iter().enumerate().map(|(i, x)| (i + 1, x))
}
/// Get `Some(&MBRPartitionEntry)` if it exists, None otherwise.
///
/// # Remarks
///
/// - The partitions start at index 1
/// - The first 4 partitions always exist
pub fn get(&self, i: usize) -> Option<&MBRPartitionEntry> {
match i {
0 => None,
1 => Some(&self.header.partition_1),
2 => Some(&self.header.partition_2),
3 => Some(&self.header.partition_3),
4 => Some(&self.header.partition_4),
i => self.logical_partitions.get(i - 5).map(|x| &x.partition),
}
}
/// Get `Some(&mut MBRPartitionEntry)` if it exists, None otherwise.
///
/// # Remarks
///
/// - The partitions start at index 1
/// - The first 4 partitions always exist
pub fn get_mut(&mut self, i: usize) -> Option<&mut MBRPartitionEntry> {
match i {
0 => None,
1 => Some(&mut self.header.partition_1),
2 => Some(&mut self.header.partition_2),
3 => Some(&mut self.header.partition_3),
4 => Some(&mut self.header.partition_4),
i => self
.logical_partitions
.get_mut(i - 5)
.map(|x| &mut x.partition),
}
}
/// The total number of partitions on the disk: primary partitions and logical partitions.
///
/// # Remark
///
/// The primary partitions are always counted even if they are empty.
pub fn len(&self) -> usize {
4 + self.logical_partitions.len()
}
/// Always false: primary partitions are always counted even if they are empty.
pub fn is_empty(&self) -> bool {
false
}
/// Make a new MBR
///
/// # Examples
/// Basic usage:
/// ```
/// let mut f = std::fs::File::open("tests/fixtures/disk1.img")
/// .expect("could not open disk");
/// let mbr = mbrman::MBR::new_from(&mut f, 512, [0x01, 0x02, 0x03, 0x04])
/// .expect("could not make a partition table");
/// ```
pub fn new_from<S>(seeker: &mut S, sector_size: u32, disk_signature: [u8; 4]) -> Result<MBR>
where
S: Seek,
{
let disk_size = u32::try_from(seeker.seek(SeekFrom::End(0))? / u64::from(sector_size))
.unwrap_or(u32::MAX);
let header = MBRHeader::new(disk_signature);
Ok(MBR {
sector_size,
header,
logical_partitions: Vec::new(),
align: DEFAULT_ALIGN,
cylinders: 0,
heads: 0,
sectors: 0,
disk_size,
})
}
/// Read the MBR on a reader.
///
/// # Examples
/// Basic usage:
/// ```
/// let mut f = std::fs::File::open("tests/fixtures/disk1.img")
/// .expect("could not open disk");
/// let mbr = mbrman::MBR::read_from(&mut f, 512)
/// .expect("could not read the partition table");
/// ```
pub fn read_from<R: ?Sized>(mut reader: &mut R, sector_size: u32) -> Result<MBR>
where
R: Read + Seek,
{
let disk_size = u32::try_from(reader.seek(SeekFrom::End(0))? / u64::from(sector_size))
.unwrap_or(u32::MAX);
let header = MBRHeader::read_from(&mut reader)?;
let mut logical_partitions = Vec::new();
if let Some(extended) = header.get_extended_partition() {
// NOTE: The number of sectors is an index field; thus, the zero
// value is invalid, reserved and must not be used in normal
// partition entries. The entry is used by operating systems
// in certain circumstances; in such cases the CHS addresses
// are ignored.
let mut relative_ebr_lba = 0;
let mut ebr_sectors = None;
let mut ebr_first_chs = extended.first_chs;
let mut ebr_last_chs = None;
loop {
reader.seek(SeekFrom::Start(u64::from(
(extended.starting_lba + relative_ebr_lba) * sector_size,
)))?;
let (partition, next, bootstrap_code) = match EBRHeader::read_from(&mut reader) {
Ok(ebr) => ebr.unwrap(),
Err(err) => {
if relative_ebr_lba == 0 {
// NOTE: if the extended partition is empty, it is not required that an
// EBR exists
break;
} else {
return Err(err);
}
}
};
let absolute_ebr_lba = extended.starting_lba + relative_ebr_lba;
logical_partitions.push(LogicalPartition {
partition: MBRPartitionEntry {
starting_lba: partition.starting_lba + absolute_ebr_lba,
..partition
},
absolute_ebr_lba,
ebr_sectors,
ebr_first_chs,
ebr_last_chs,
bootstrap_code,
});
if next.starting_lba > 0 && relative_ebr_lba >= next.starting_lba {
return Err(Error::InconsistentEBR);
}
relative_ebr_lba = next.starting_lba;
ebr_sectors = Some(next.sectors);
ebr_first_chs = next.first_chs;
ebr_last_chs = Some(next.last_chs);
if relative_ebr_lba == 0 {
break;
}
}
}
let align = MBR::find_alignment(&header, &logical_partitions);
Ok(MBR {
sector_size,
header,
logical_partitions,
align,
cylinders: 0,
heads: 0,
sectors: 0,
disk_size,
})
}
fn find_alignment(header: &MBRHeader, logical_partitions: &[LogicalPartition]) -> u32 {
let lbas = header
.iter()
.map(|(_, x)| x)
.chain(logical_partitions.iter().map(|x| &x.partition))
.filter(|x| x.is_used())
.map(|x| x.starting_lba)
.collect::<Vec<_>>();
if lbas.is_empty() {
return DEFAULT_ALIGN;
}
if lbas.len() == 1 && lbas[0] == FIRST_USABLE_LBA {
return FIRST_USABLE_LBA;
}
(1..=MAX_ALIGN.min(*lbas.iter().max().unwrap_or(&1)))
.filter(|div| lbas.iter().all(|x| x % div == 0))
.max()
.unwrap()
}
/// Return `true` if the MBR has a valid geometry. The geometry can be set by setting
/// the fiels `cylinders`, `heads` and `sectors`.
///
/// Remarks
///
/// The cylinders, heads and sectors must have a value greater than zero.
///
/// The cylinders cannot exceed 1023.
///
/// The sectors cannot exceed 63.
pub fn check_geometry(&self) -> bool {
self.cylinders > 0
&& self.cylinders <= 1023
&& self.heads > 0
&& self.sectors > 0
&& self.sectors <= 63
}
/// Write the MBR to a writer. This function will seek automatically in the writer.
/// This function will update the CHS address of the partitions automatically if a valid
/// geometry has been set. See `check_geometry`.
///
/// # Examples
/// Basic usage:
/// ```
/// let ss = 512;
/// let data = vec![0; 100 * ss as usize];
/// let mut cur = std::io::Cursor::new(data);
/// let mut mbr = mbrman::MBR::new_from(&mut cur, ss as u32, [0xff; 4])
/// .expect("could not make a partition table");
///
/// // actually write:
/// mbr.write_into(&mut cur)
/// .expect("could not write MBR to disk")
/// ```
pub fn write_into<W: ?Sized>(&mut self, mut writer: &mut W) -> Result<()>
where
W: Write + Seek,
{
self.header.write_into(&mut writer)?;
if let Some(extended) = self.header.get_extended_partition() {
if let Some(first) = self.logical_partitions.get_mut(0) {
first.absolute_ebr_lba = extended.starting_lba;
first.ebr_sectors = None;
first.ebr_last_chs = None;
}
if self.check_geometry() {
for l in self.logical_partitions.iter_mut() {
l.update_chs(self.cylinders, self.heads, self.sectors)?;
}
}
// newtype for bootstrap code so we can serialize it via BigArray
// pending https://github.com/serde-rs/serde/issues/1937
#[derive(Serialize)]
struct BootstrapCode446(#[serde(with = "BigArray")] [u8; 446]);
let next_logical_partitions = self
.logical_partitions
.iter()
.skip(1)
.map(Some)
.chain(once(None));
for (l, next) in self.logical_partitions.iter().zip(next_logical_partitions) {
let partition = MBRPartitionEntry {
starting_lba: l.partition.starting_lba.saturating_sub(l.absolute_ebr_lba),
..l.partition
};
partition.check()?;
writer.seek(SeekFrom::Start(u64::from(
l.absolute_ebr_lba * self.sector_size,
)))?;
encode_into_std_write(&BootstrapCode446(l.bootstrap_code), &mut writer, legacy())?;
encode_into_std_write(&partition, &mut writer, legacy())?;
if let Some(next) = next {
encode_into_std_write(
&MBRPartitionEntry {
boot: BOOT_INACTIVE,
first_chs: next.ebr_first_chs,
sys: extended.sys,
last_chs: next.ebr_last_chs.unwrap(),
starting_lba: next
.absolute_ebr_lba
.saturating_sub(extended.starting_lba),
sectors: next.ebr_sectors.unwrap(),
},
&mut writer,
legacy()
)?;
} else {
encode_into_std_write(&MBRPartitionEntry::empty(), &mut writer, legacy())?;
}
writer.write_all(&[0; 16 * 2])?;
encode_into_std_write(&BOOT_SIGNATURE, &mut writer, legacy())?;
}
}
Ok(())
}
/// Get a cylinder size in sectors. This function is useful if you want to
/// align your partitions to the cylinder.
pub fn get_cylinder_size(&self) -> u32 {
u32::from(self.heads) * u32::from(self.sectors)
}
/// Finds the primary partition (ignoring extended partitions) or logical
/// partition where the given sector resides.
pub fn find_at_sector(&self, sector: u32) -> Option<usize> {
let between = |sector, start, len| sector >= start && sector < start + len;
let primary = self
.header
.iter()
.find(|(_, x)| x.is_used() && between(sector, x.starting_lba, x.sectors));
match primary {
Some((_, x)) if x.is_extended() => self
.logical_partitions
.iter()
.enumerate()
.find(|(_, x)| {
x.partition.is_used()
&& between(sector, x.partition.starting_lba, x.partition.sectors)
})
.map(|(i, _)| 5 + i),
Some((i, _)) => Some(i),
None => None,
}
}
/// Remove a partition entry that resides at a given sector. If the partition is the extended
/// partition, it will delete also all the logical partitions.
///
/// # Errors
/// It is an error to provide a sector which does not belong to a partition.
pub fn remove_at_sector(&mut self, sector: u32) -> Result<()> {
let i = self
.find_at_sector(sector)
.ok_or(Error::PartitionNotFound)?;
if i >= 5 {
self.remove(i);
} else {
if self[i].is_extended() {
self.logical_partitions.clear();
}
self[i] = MBRPartitionEntry::empty();
}
Ok(())
}
/// Find free spots in the partition table.
/// This function will return a vector of tuple with on the left: the starting LBA of the free
/// spot; and on the right: the size (in sectors) of the free spot.
/// This function will automatically align with the alignment defined in the `MBR`.
///
/// # Examples
/// Basic usage:
/// ```
/// let ss = 512;
/// let data = vec![0; 100 * ss as usize];
/// let mut cur = std::io::Cursor::new(data);
/// let mut mbr = mbrman::MBR::new_from(&mut cur, ss as u32, [0xff; 4])
/// .expect("could not create partition table");
///
/// mbr[1] = mbrman::MBRPartitionEntry {
/// boot: mbrman::BOOT_INACTIVE,
/// first_chs: mbrman::CHS::empty(),
/// sys: 0x83,
/// last_chs: mbrman::CHS::empty(),
/// starting_lba: 6,
/// sectors: mbr.disk_size - 11,
/// };
///
/// // NOTE: align to the sectors, so we can use every last one of them
/// // NOTE: this is only for the demonstration purpose, this is not recommended
/// mbr.align = 1;
///
/// assert_eq!(
/// mbr.find_free_sectors(),
/// vec![(1, 5), (mbr.disk_size - 5, 5)]
/// );
/// ```
pub fn find_free_sectors(&self) -> Vec<(u32, u32)> {
assert!(self.align > 0, "align must be greater than 0");
let collect_free_sectors = |positions: Vec<u32>| {
positions
.chunks(2)
.map(|x| (x[0] + 1, x[1] - x[0] - 1))
.filter(|(_, l)| *l > 0)
.map(|(i, l)| (i, l, ((i - 1) / self.align + 1) * self.align - i))
.map(|(i, l, s)| (i + s, l.saturating_sub(s)))
.filter(|(_, l)| *l > 0)
.collect::<Vec<_>>()
};
let mut positions = vec![0];
for (_, partition) in self.header.iter().filter(|(_, x)| x.is_used()) {
positions.push(partition.starting_lba);
positions.push(partition.starting_lba + partition.sectors - 1);
}
positions.push(self.disk_size);
positions.sort_unstable();
let mut res = collect_free_sectors(positions);
if let Some(extended) = self.header.get_extended_partition() {
let mut positions = vec![extended.starting_lba];
for l in self
.logical_partitions
.iter()
.filter(|x| x.partition.is_used())
{
let starting_lba = l.absolute_ebr_lba + l.partition.starting_lba;
positions.push(starting_lba);
positions.push(starting_lba + l.partition.sectors - 1);
}
positions.push(extended.starting_lba + extended.sectors);
positions.sort_unstable();
res.extend(collect_free_sectors(positions));
}
res
}
/// Find the first place (most on the left) where you could start a new partition of the size
/// given in parameter.
/// This function will automatically align with the alignment defined in the `MBR`.
///
/// # Examples:
/// Basic usage:
/// ```
/// let ss = 512;
/// let data = vec![0; 100 * ss as usize];
/// let mut cur = std::io::Cursor::new(data);
/// let mut mbr = mbrman::MBR::new_from(&mut cur, ss as u32, [0xff; 4])
/// .expect("could not create partition table");
///
/// mbr[1] = mbrman::MBRPartitionEntry {
/// boot: mbrman::BOOT_INACTIVE,
/// first_chs: mbrman::CHS::empty(),
/// sys: 0x83,
/// last_chs: mbrman::CHS::empty(),
/// starting_lba: 6,
/// sectors: mbr.disk_size - 6,
/// };
///
/// // NOTE: align to the sectors, so we can use every last one of them
/// // NOTE: this is only for the demonstration purpose, this is not recommended
/// mbr.align = 1;
///
/// assert_eq!(mbr.find_first_place(5), Some(1));
/// ```
pub fn find_first_place(&self, size: u32) -> Option<u32> {
self.find_free_sectors()
.iter()
.find(|(_, l)| *l >= size)
.map(|(i, _)| *i)
}
/// Find the last place (most on the right) where you could start a new partition of the size
/// given in parameter.
/// This function will automatically align with the alignment defined in the `MBR`.
///
/// # Examples:
/// Basic usage:
/// ```
/// let ss = 512;
/// let data = vec![0; 100 * ss as usize];
/// let mut cur = std::io::Cursor::new(data);
/// let mut mbr = mbrman::MBR::new_from(&mut cur, ss as u32, [0xff; 4])
/// .expect("could not create partition table");
///
/// mbr[1] = mbrman::MBRPartitionEntry {
/// boot: mbrman::BOOT_INACTIVE,
/// first_chs: mbrman::CHS::empty(),
/// sys: 0x83,
/// last_chs: mbrman::CHS::empty(),
/// starting_lba: 6,
/// sectors: 5,
/// };
///
/// // NOTE: align to the sectors, so we can use every last one of them
/// // NOTE: this is only for the demonstration purpose, this is not recommended
/// mbr.align = 1;
///
/// assert_eq!(mbr.find_last_place(5), Some(mbr.disk_size - 5));
/// ```
pub fn find_last_place(&self, size: u32) -> Option<u32> {
self.find_free_sectors()
.iter()
.filter(|(_, l)| *l >= size)
.last()
.map(|(i, l)| (i + l - size) / self.align * self.align)
}
/// Find the most optimal place (in the smallest free space) where you could start a new
/// partition of the size given in parameter.
/// This function will automatically align with the alignment defined in the `MBR`.
///
/// # Examples:
/// Basic usage:
/// ```
/// let ss = 512;
/// let data = vec![0; 100 * ss as usize];
/// let mut cur = std::io::Cursor::new(data);
/// let mut mbr = mbrman::MBR::new_from(&mut cur, ss as u32, [0xff; 4])
/// .expect("could not create partition table");
///
/// mbr[1] = mbrman::MBRPartitionEntry {
/// boot: mbrman::BOOT_INACTIVE,
/// first_chs: mbrman::CHS::empty(),
/// sys: 0x83,
/// last_chs: mbrman::CHS::empty(),
/// starting_lba: 11,
/// sectors: mbr.disk_size - 11 - 5,
/// };
///
/// // NOTE: align to the sectors, so we can use every last one of them
/// // NOTE: this is only for the demonstration purpose, this is not recommended
/// mbr.align = 1;
///
/// // NOTE: the space as the end is more optimal because it will allow you to still be able to
/// // insert a bigger partition later
/// assert_eq!(mbr.find_optimal_place(5), Some(mbr.disk_size - 5));
/// ```
pub fn find_optimal_place(&self, size: u32) -> Option<u32> {
let mut slots = self
.find_free_sectors()
.into_iter()
.filter(|(_, l)| *l >= size)
.collect::<Vec<_>>();
slots.sort_by(|(_, l1), (_, l2)| l1.cmp(l2));
slots.first().map(|&(i, _)| i)
}
/// Get the maximum size (in sectors) of a partition you could create in the MBR.
/// This function will automatically align with the alignment defined in the `MBR`.
///
/// # Examples:
/// Basic usage:
/// ```
/// let ss = 512;
/// let data = vec![0; 100 * ss as usize];
/// let mut cur = std::io::Cursor::new(data);
/// let mut mbr = mbrman::MBR::new_from(&mut cur, ss as u32, [0xff; 4])
/// .expect("could not create partition table");
///
/// // NOTE: align to the sectors, so we can use every last one of them
/// // NOTE: this is only for the demonstration purpose, this is not recommended
/// mbr.align = 1;
///
/// assert_eq!(
/// mbr.get_maximum_partition_size().unwrap_or(0),
/// mbr.disk_size - 1
/// );
/// ```
pub fn get_maximum_partition_size(&self) -> Result<u32> {
self.find_free_sectors()
.into_iter()
.map(|(_, l)| l / self.align * self.align)
.max()
.ok_or(Error::NoSpaceLeft)
}
/// Push a new logical partition to the end of the extended partition list. This function will
/// take care of creating the EBR for you. The EBR will be located at `starting_lba` (provided
/// in input) and the logical partition itself will be located a block further to stay
/// aligned. The size of the logical partition will be one block smaller than the `sectors`
/// provided in input.
pub fn push(
&mut self,
sys: u8,
mut starting_lba: u32,
mut sectors: u32,
) -> Result<&mut LogicalPartition> {
let extended = self
.header
.get_extended_partition()
.ok_or(Error::NoExtendedPartition)?;
starting_lba = ((starting_lba - 1) / self.align + 1) * self.align;
sectors = ((sectors - 1) / self.align + 1) * self.align;
if sectors < 2 * self.align {
return Err(Error::NotEnoughSectorsToCreateLogicalPartition);
}
let mut l = LogicalPartition {
partition: MBRPartitionEntry {
boot: BOOT_INACTIVE,
first_chs: CHS::empty(),
sys,
last_chs: CHS::empty(),
starting_lba: starting_lba + self.align,
sectors: sectors - self.align,
},
absolute_ebr_lba: starting_lba,
ebr_sectors: if self.logical_partitions.is_empty() {
None
} else {
Some(sectors)
},
ebr_first_chs: CHS::empty(),
ebr_last_chs: if self.logical_partitions.is_empty() {
None
} else {
Some(CHS::empty())
},
bootstrap_code: [0; 446],
};
if l.absolute_ebr_lba < extended.starting_lba {
return Err(Error::EBRStartsBeforeExtendedPartition);
}
if l.absolute_ebr_lba > extended.starting_lba + extended.sectors - 2 * self.align {
return Err(Error::EBRStartsTooCloseToTheEndOfExtendedPartition);
}
if let Some(ebr_sectors) = l.ebr_sectors {
let ending_ebr_lba = l.absolute_ebr_lba + ebr_sectors - 1;
if ending_ebr_lba > extended.starting_lba + extended.sectors - 1 {
return Err(Error::EBREndsAfterExtendedPartition);
}
}
if self.check_geometry() {
l.update_chs(self.cylinders, self.heads, self.sectors)?;
}
self.logical_partitions.push(l);
Ok(self.logical_partitions.last_mut().unwrap())
}
/// Remove a logical partition. This will remove a logical partition in the array.
///
/// # Remark
///
/// This operation will decrease by one the index of every logical partition after the one that
/// has been removed.
///
/// # Panics
///
/// Panics if `index` is out of bounds.
pub fn remove(&mut self, index: usize) -> LogicalPartition {
assert!(index >= 5, "logical partitions start at 5");
self.logical_partitions.remove(index - 5)
}
}
impl Index<usize> for MBR {
type Output = MBRPartitionEntry;
fn index(&self, i: usize) -> &Self::Output {
assert!(i != 0, "invalid partition index: 0");
self.get(i).expect("invalid partition")
}
}
impl IndexMut<usize> for MBR {
fn index_mut(&mut self, i: usize) -> &mut Self::Output {
assert!(i != 0, "invalid partition index: 0");
self.get_mut(i).expect("invalid partition")
}
}
/// An MBR partition table header
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, Eq)]
pub struct MBRHeader {
/// Bootstrap code area
#[serde(with = "BigArray")]
pub bootstrap_code: [u8; 440],
/// 32-bit disk signature
pub disk_signature: [u8; 4],
/// `[0x5a, 0x5a]` if protected, `[0x00, 0x00]` if not
pub copy_protected: [u8; 2],
/// Partition 1
pub partition_1: MBRPartitionEntry,
/// Partition 2
pub partition_2: MBRPartitionEntry,
/// Partition 3
pub partition_3: MBRPartitionEntry,
/// Partition 4
pub partition_4: MBRPartitionEntry,
/// Boot signature