-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdataloader.py
135 lines (94 loc) · 3.81 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import random
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
import time
import scipy.io as sio
import math
import cv2
import pandas as pd
import subprocess
import matplotlib as m
class DataLoader:
def __init__(self, verbose=False):
self.verbose = verbose
self.x = []
self.y = []
self.cumm = []
self.label = []
self.n_lag = 3
self.n_seq = 3
self.ref = []
def load_data(self):
df = pd.read_csv("Data_Simulated_Bakken/DATA_BAKKEN.csv")
df = df.to_numpy()
x = df[:, 0:6]
self.y = df[:, 6:6+60]
x_min = np.min(x, axis=0)
x_max = np.max(x, axis=0)
self.x = (x - x_min)/(x_max - x_min)
self.cumm = (np.sum(self.y, axis=-1)).flatten()
#derive label for performance
partitions = [2100, 3700]
self.label = np.zeros(self.cumm.shape, dtype=np.int16)
self.label = np.where(self.cumm > partitions[0], 1, self.label)
self.label = np.where(self.cumm > partitions[1], 2, self.label)
p = 400
x_train_sim = self.x[0:p, :]
x_test_sim = self.x[p:, :]
train1 = self.cumm[0:p,]
test1 = self.cumm[p:,]
train2 = self.label[0:p,]
test2 = self.label[p:,]
from tensorflow.keras.utils import to_categorical
train2_one_hot = to_categorical(train2)
test2_one_hot = to_categorical(test2)
label_one_hot = to_categorical(self.label)
if self.verbose:
#visualize the histograms
plt.figure(figsize=[12, 3.5])
plt.subplot(1, 3, 1)
plt.hist(self.cumm, bins=50)
for p in partitions:
plt.axvline(x=p, c='r', lw=3)
plt.xlim([0, 11000])
plt.title("Data")
plt.subplot(1, 3, 2)
#visualize the histograms (CDF)
plt.hist(self.cumm, bins=50, cumulative=True, density=True)
for p in partitions:
plt.axvline(x=p, c='r', lw=3)
plt.xlim([0, 11000])
plt.title("Data")
plt.subplot(1, 3, 3)
plt.hist(self.label)
plt.title("Data")
return x_train_sim, x_test_sim, train1, test1, train2, test2, train2_one_hot, test2_one_hot
def series_to_supervised(self, data, n_lag=1, n_seq=1, dropnan=True):
n_vars = 1 if type(data) is list else data.shape[1]
df = pd.DataFrame(data)
cols, names = list(), list()
for i in range(n_lag, 0, -1):
cols.append(df.shift(i))
names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]
for i in range(0, n_seq):
cols.append(df.shift(-i))
if i == 0:
names += [('var%d(t)' % (j+1)) for j in range(n_vars)]
else:
names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]
agg = pd.concat(cols, axis=1)
agg.columns = names
if dropnan:
agg.dropna(inplace=True)
return agg
def get_time_series(self, ref_case=0, n_lag=1, n_seq=1, split=0.8):
self.n_lag, self.n_seq = n_lag, n_seq
np.random.seed(99)
ref = (self.y[ref_case, :] - np.min(self.y[ref_case, :])) / (np.max(self.y[ref_case, :]) - np.min(self.y[ref_case, :]))
self.ref = ref + np.random.normal(loc=0.0, scale=0.03, size=ref.shape)
data = self.series_to_supervised(self.ref.tolist(), self.n_lag, self.n_seq)
split_idx = int(data.shape[0]*split)
y_train_sim, y_test_sim = data[0:split_idx], data[split_idx:]
return y_train_sim, y_test_sim