-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagents.py
493 lines (412 loc) · 14.6 KB
/
agents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
"""
Class descriptions for all agents.
"""
import numpy as np
import random
from tqdm import tqdm
class Agent(object):
def __init__(self, G, A):
self.graph = G
self.actions = A
self.numVar = len(self.graph.variables) - 1
self.rewardVariable = self.numVar
def _step(self, t=0):
raise NotImplementedError
def run(self, horizon=100, step_size=5):
self.rewards = np.zeros(len(self.actions))
self.n_pulled = np.zeros(len(self.actions))
ans = []
for t in tqdm(range(horizon)):
self._step(t)
if t % step_size == step_size - 1:
ans.append(self.rewards.sum())
return ans
class UCBAgent(Agent):
def __init__(self, G, A):
super(UCBAgent, self).__init__(G, A)
def _step(self, t):
if t < len(self.actions):
# sample each arm/action once
assignments = self.graph.intervention(self.actions[t])
reward = assignments[len(assignments)-1]
self.n_pulled[t] += 1
self.rewards[t] += reward
else:
# follow UCB algorithm
ucb = (self.rewards * 1.0 / self.n_pulled ) + np.sqrt( 2 * np.log(t) / self.n_pulled )
a = np.argmax(ucb)
assignments = self.graph.intervention(self.actions[a])
reward = assignments[len(assignments)-1]
self.n_pulled[a] += 1
self.rewards[a] += reward
class KL_UCBAgent(Agent):
def __init__(self, G, A):
super(KL_UCBAgent, self).__init__(G, A)
def _objective(self, t):
DELTA = 1e-4
EPSILON = 1e-4
p_hat = self.rewards / self.n_pulled
t1 = np.array([0. if p_hat[i] == 0. or p_hat[i] == 1. \
else p_hat[i] * np.log(p_hat[i]) + (1. - p_hat[i]) * np.log(1. - p_hat[i]) \
for i in range(len(self.actions))])
t2 = (np.log(t) + 3. * np.log(np.log(t))) / self.n_pulled
constant = t1 - t2
q = np.minimum(np.maximum((1. + p_hat) / 2., p_hat + DELTA), 1.-DELTA)
fn_val = constant - p_hat*np.log(q) - (1. - p_hat)*np.log(1. - q)
while not all(np.logical_or(np.abs(fn_val) < EPSILON, q >= 1.-DELTA)):
fn_q = (q - p_hat) / (q * (1. - q))
q -= fn_val / fn_q
q = np.minimum(np.maximum(q, p_hat + DELTA), 1.-DELTA)
fn_val = constant - p_hat*np.log(q) - (1. - p_hat)*np.log(1. - q)
return q
def _step(self, t):
if len(self.actions) > 2 and t < len(self.actions):
# initialize by pulling all arms once
assignments = self.graph.intervention(self.actions[t])
reward = assignments[len(assignments)-1]
self.n_pulled[t] += 1
self.rewards[t] += reward
elif len(self.actions) <= 2 and t < 2*len(self.actions):
# initialize by pulling all arms twice
# done to avoid ln(t)+3*ln(ln(t)) from becoming negative
assignments = self.graph.intervention(self.actions[t%len(self.actions)])
reward = assignments[len(assignments)-1]
self.n_pulled[t%len(self.actions)] += 1
self.rewards[t%len(self.actions)] += reward
else:
ucb = self._objective(t)
arm = np.argmax(ucb)
assignments = self.graph.intervention(self.actions[arm])
reward = assignments[len(assignments)-1]
self.n_pulled[arm] += 1
self.rewards[arm] += reward
class TSAgent(Agent):
def __init__(self, G, A):
super(TSAgent, self).__init__(G, A)
def _step(self, t):
x = np.random.beta(1+self.s, 1+self.f)
arm = np.argmax(x)
assignments = self.graph.intervention(self.actions[arm])
reward = assignments[len(assignments)-1]
self.n_pulled[arm] += 1
self.s[arm] += reward; self.f[arm] += 1-reward
def run(self, horizon=100, step_size=5):
self.s = np.zeros(len(self.actions), dtype=int)
self.f = np.zeros(len(self.actions), dtype=int)
self.n_pulled = np.zeros(len(self.actions), dtype=int)
ans = []
for t in tqdm(range(horizon)):
self._step(t)
if t % step_size == step_size - 1:
ans.append(self.s.sum())
return ans
class OC_TSAgent(Agent):
def __init__(self, G, A):
super(OC_TSAgent, self).__init__(G, A)
def _step(self, t):
success_chance = np.zeros(len(self.actions))
for a in range(len(self.actions)):
partition_prob = np.random.dirichlet(self.dirc[:,a]).reshape(-1,1)
sample_prob = np.random.beta(self.beta[:,0], self.beta[:,1]).reshape(1,-1)
success_chance[a] = (sample_prob @ partition_prob).item()
arm = np.argmax(success_chance)
assignments = self.graph.intervention(self.actions[arm])
reward = assignments[len(assignments)-1]
z = sum([2**i * assignments[i] for i in range(len(self.graph.variables)-1)])
self.dirc[z, arm] += 1
self.beta[z, 1-int(reward)] += 1
self.rewards[arm] += reward
def run(self, horizon=100, step_size=5):
n_part = 2 ** (len(self.graph.variables) - 1)
self.beta = np.ones([n_part, 2], dtype=int)
self.dirc = np.ones([n_part, len(self.actions)], dtype=int)
self.rewards = np.zeros(len(self.actions))
ans = []
for t in tqdm(range(horizon)):
self._step(t)
if t % step_size == step_size - 1:
ans.append(self.rewards.sum())
return ans
class EpsilonAgent(Agent):
def __init__(self, G, A):
super(EpsilonAgent, self).__init__(G, A)
# Return a list of assignments to variables in graph given an encoding
# of the assignments in a string format
def _getAssignmentFromString(self, sx):
return list(map(int, sx))
# Return an encoding of the assignments in a string format given a
# list of assignments to variables in graph
def _getStringFromAssignment(self, assignment):
# If the input is a dictionary (i.e. an assignment dictionary)
#
# Can be sped up using the invariant mapping present in
# assignment.values()
if type(assignment) is dict:
string = [0] * len(self.graph.variables)
for key in assignment.keys():
string[int(key)] = assignment[key]
return "".join(map(str, string))
# If input is a list of assignments
if type(assignment) is list:
return "".join(map(str, assignment))
raise NotImplementedError
# Update self.prob_successful_action and self.prob_action given the
# sample 'assignment'
def _updateProbabilities(self, assignment):
actions = self.actions
reward = assignment[self.rewardVariable]
for key in assignment.keys():
self.total_actions += 1
if reward == 1:
self.total_successful_actions += 1
dict_index = self._getStringFromAssignment(assignment)
if dict_index not in self.run_history.keys():
self.run_history[dict_index] = 1
else:
self.run_history[dict_index] += 1
# Run a single iteration
def _step(self, time_step, epsilon):
# Explore different actions
actions = self.actions
if random.random() < epsilon:
i = int(random.random() * len(self.actions))
assignment = self.graph.intervention(actions[i])
self._updateProbabilities(assignment)
# Exploit using run history table
else:
expectations = [0] * len(actions)
for x in actions:
var = list(x.keys())[0]
action = x[var]
assignment_count = dict()
reward_count = dict()
consistent_assn_count = dict()
run_history = self.run_history
for key in run_history.keys():
parent_assignment = [
i for i in key
if i in self.graph.parents[var]
]
parent_assignment = "".join(map(str, parent_assignment))
if parent_assignment in assignment_count.keys():
assignment_count[parent_assignment] += 1
else:
assignment_count[parent_assignment] = 1
reward_count[parent_assignment] = 0
consistent_assn_count[parent_assignment] = 0
for key in assignment_count.keys():
if consistent_assn_count[key] != 0:
expectations[2*var+action] += (reward_count[key] / consistent_assn_count[key]) * (assignment_count[key] * self.total_actions)
action = expectations.index(max(expectations))
assignment = self.graph.intervention({var: action})
self._updateProbabilities(assignment)
# Run the algorithm for given horizons
def run(self, horizon=100, step_size = 5):
# This stores the intervention and rewards in a dictionary format:
# self.run_history["000010"] = 3 indicates that values
# [x1, x2, x3, x4, x5] = [0, 0, 0, 0, 1] led to a reward of 0 (the
# last character in the string) in exactly 3 runs
self.run_history = dict()
# Total number of actions which led to a reward of 1 and total
# number of actions
self.total_successful_actions = 0
self.total_actions = 0
def positiveReward(sx):
# assignments = _getAssignmentFromString(sx)
# return assignments[-1] == 1
v = (sx[-1] == "1")
# print(v)
return v
ans = []
for t in tqdm(range(horizon)):
self._step(t, epsilon=0.2)
if t % step_size == step_size - 1:
reward_counts = [
self.run_history[assn]
for assn in self.run_history.keys()
if positiveReward(assn)
]
ans.append(sum(reward_counts))
return ans
class SampleGraph:
def __init__(self,G):
self.variables = np.arange(len(G.parents))
self.numVar = len(self.variables) - 1
self.rewardVariable = self.numVar
self.parents = G.parents
self.ZeroCount = {}
self.OneCount = {}
for i in self.variables:
self.ZeroCount[i] = np.zeros([2**len(self.parents[i]),]) + 1
self.OneCount[i] = np.zeros([2**len(self.parents[i]),]) + 1
def update(self,assignment,varIntervened = []):
for i in self.variables:
if i not in varIntervened:
idx = 0
j = 0
for p in self.parents[i]:
idx = idx + (assignment[p] * (2**j) )
j = j + 1
if assignment[i] == 0:
self.ZeroCount[i][idx] += 1
else:
self.OneCount[i][idx] += 1
def binaryIntervention(self, assignment = {}):
returnAssign = {}
for v in self.variables:
if v not in assignment:
idx = 0
j = 0
for p in self.parents[v]:
idx = idx + (returnAssign[p] * (2**j) )
j = j + 1
p = self.ZeroCount[v][idx] * 1.0 / (self.OneCount[v][idx] + self.ZeroCount[v][idx])
if random.random() < p:
returnAssign[v] = 0
else:
returnAssign[v] = 1
else:
returnAssign[v] = assignment[v]
return returnAssign[ len(self.variables) - 1 ]
def allPossibleAssign(self,lis):
if len(lis) == 0:
return [{}]
Z = self.allPossibleAssign(lis[1:])
l = []
for z in Z:
v = {lis[0] : 0}
u = {lis[0] : 1}
v.update(z)
u.update(z)
l.append(v)
l.append(u)
return l
def P_helper(self,X,vals,A):
if len(X) == 0:
return 1.0
var = X[0]
if var in A:
if vals[var] == A[var]:
return self.P_helper(X[1:], vals, A)
else:
return 0.0
pa_var = self.parents[var]
if len(pa_var) == 0:
p = self.ZeroCount[var][0] * 1.0 / (self.OneCount[var][0] + self.ZeroCount[var][0])
if vals[var] == 1:
p = 1 - p
return p * self.P_helper(X[1:], vals, A)
new_var = set(pa_var).union(set(X[1:]))
pa_assign = self.allPossibleAssign(pa_var)
valid_assign = [z for z in pa_assign if all([z[i] == v for i,v in vals.items() if i in z])]
prob = 0.0
for z in valid_assign:
prob_given_parent = 0
idx = 0
j = 0
for par in self.parents[var]:
idx = idx + (z[par] * (2**j) )
j = j + 1
prob_given_parent = self.ZeroCount[var][idx] * 1.0 / (self.OneCount[var][idx] + self.ZeroCount[var][idx])
if vals[var] == 1:
prob_given_parent = 1 - prob_given_parent
new_vals = z
new_vals.update(vals)
prob += (prob_given_parent * self.P_helper(list(new_var), new_vals, A) )
return prob
def probabilisticIntervention(self, assignment = {}):
return self.P_helper([self.rewardVariable] , {self.rewardVariable : 1} , assignment )
class E_graphAgent(Agent):
def __init__(self,G,A,epsilon = 0.05,step = 200 , switch = 0):
super(E_graphAgent, self).__init__(G, A)
self.epsilon = epsilon
self.step = step
self.switch = switch
def _step(self,time_step,epsilon):
# WRITE CODE FOR EPSILON DECAY >>> LESS EXPLORATION
epsilon = epsilon / (1 + (time_step / self.step))
actions = self.actions
if random.random() < epsilon:
bestAction = int(random.random() * len(actions))
assignment = self.graph.intervention(actions[bestAction])
else:
bestAction = 0
rewardArray = []
for action in actions:
if self.switch == 1:
reward = 0
for i in range(int(1e2)):
reward += self.myGraph.binaryIntervention(action)
rewardArray.append(reward)
else :
rewardArray.append(self.myGraph.probabilisticIntervention(action))
bestAction = np.argmax(np.asarray(rewardArray))
assignment = self.graph.intervention(actions[bestAction])
self.rewards[bestAction] += assignment[self.rewardVariable]
self.myGraph.update(assignment , list(actions[bestAction].keys()) )
def run(self,horizon=100,step_size=5):
self.myGraph = SampleGraph(self.graph)
self.numAction = len(self.actions)
self.rewards = np.zeros(self.numAction)
ans = []
for t in tqdm(range(horizon)):
self._step(t,self.epsilon)
if t%step_size==step_size-1:
cum_award = self.rewards.sum()
ans.append(cum_award)
# print(cum_award)
return ans
class OC_TS_ED_Agent(OC_TSAgent):
def __init__(self, G, A):
super(OC_TS_ED_Agent, self).__init__(G, A)
def _step(self, t):
success_chance = np.zeros(len(self.actions))
for a in range(len(self.actions)):
partition_prob = np.random.dirichlet(self.dirc[:,a]).reshape(-1,1)
sample_prob = np.random.beta(self.beta[:,0], self.beta[:,1]).reshape(1,-1)
success_chance[a] = (sample_prob @ partition_prob).item()
arm = np.argmax(success_chance)
assignments = self.graph.intervention(self.actions[arm])
reward = assignments[len(assignments)-1]
z = sum([2**i * assignments[self.graph.parents[self.numVar][i]] for i in range(len(self.graph.parents[self.numVar]))])
self.dirc[z, arm] += 1
self.beta[z, 1-int(reward)] += 1
self.rewards[arm] += reward
def run(self, horizon=100, step_size=5):
n_part = 2 ** len(self.graph.parents[self.numVar])
self.beta = np.ones([n_part, 2], dtype=int)
self.dirc = np.ones([n_part, len(self.actions)], dtype=int)
self.rewards = np.zeros(len(self.actions))
ans = []
for t in tqdm(range(horizon)):
self._step(t)
if t % step_size == step_size - 1:
ans.append(self.rewards.sum())
return ans
class OC_TS_Empirical_Agent(OC_TSAgent):
def __init__(self, G, A):
super(OC_TS_Empirical_Agent, self).__init__(G, A)
def _step(self, t):
success_chance = np.zeros(len(self.actions))
for a in range(len(self.actions)):
partition_prob = (self.empirical[:,a] / np.sum(self.empirical[:,a])).reshape(-1,1)
sample_prob = np.random.beta(self.beta[:,0], self.beta[:,1]).reshape(1,-1)
success_chance[a] = (sample_prob @ partition_prob).item()
arm = np.argmax(success_chance)
assignments = self.graph.intervention(self.actions[arm])
reward = assignments[len(assignments)-1]
z = sum([2**i * assignments[i] for i in range(len(self.graph.variables) - 1)])
self.empirical[z, arm] += 1
self.beta[z, 1-int(reward)] += 1
self.rewards[arm] += reward
def run(self, horizon=100, step_size=5):
n_part = 2 ** (len(self.graph.variables) - 1)
self.beta = np.ones([n_part, 2], dtype=int)
self.empirical = np.ones([n_part, len(self.actions)], dtype=int)
self.rewards = np.zeros(len(self.actions))
ans = []
for t in tqdm(range(horizon)):
self._step(t)
if t % step_size == step_size - 1:
ans.append(self.rewards.sum())
return ans