-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCFP_hapmap.py
executable file
·702 lines (548 loc) · 25.3 KB
/
CFP_hapmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
#!/usr/bin/env python
import sys
import os
import operator
import bisect
import matplotlib
import brewer2mpl
import numpy as np
import statsmodels.api as sm
import pandas as pd
import matplotlib.pyplot as plt
from itertools import izip
from matplotlib import rcParams
from matplotlib import gridspec
from scipy import stats
from collections import Counter
''' local imports '''
import cfp_score as cfp
import hfs_utils as hfs
import hap_reader_ms as hap_read
# for regression plots
save_to_dir = "/home/rronen/Dropbox/UCSD/workspace/SoftSweep/plots/real_sweeps_CMS"
JITTER_FRAC = 0 # 0.01
# general settings
DEBUG = True
DISCARD_NO_CHIMP = True
norm = 1
report_balanced_acc = True
hap_ids = []
chimp_alleles = {} # chimp alleles
ref_alleles = {} # reference alleles
radii = np.arange(10000, 2000001, 5000) # radii to consider
# LCT, CEU
hm3_chr2_ceu = "hm3_LCT/hapmap3_r2_b36_fwd.consensus.qc.poly.chr2_ceu.phased"
hm2_chr2_ceu = "hm2_LCT/hm2_to_3_chr2_CEU_r21_nr_fwd.phased"
# TRPV6, CEU
hm3_chr7_ceu = "hm3_TRPV6/hapmap3_r2_b36_fwd.consensus.qc.poly.chr7_ceu.phased"
# PSCA, YRI, CHB or JPT+CHB
hm3_chr8_yri = "hm2_PSCA/hm2_to_3_chr8_YRI_r21_nr_fwd.phased"
hm3_chr8_chb = "hm3_PSCA/hapmap3_r2_b36_fwd.consensus.qc.poly.chr8_chb.unr.phased"
hm3_chr8_chb_jpt = "hm3_PSCA/hapmap3_r2_b36_fwd.consensus.qc.poly.chr8_jpt+chb.unr.phased"
# EDAR, CHB or JPT+CHB
hm2_chr2_chb = "hm2_EDAR/hm2_to_3_chr2_CHB_r21_nr_fwd.phased"
hm2_chr2_chb_jpt = "hm2_EDAR/hm2_to_3_chr2_JPT+CHB_r21_nr_fwd.phased"
# ADH1B, CHB or JPT+CHB
hm2_chr4_chb = "hm2_ADH1B/hm2_to_3_chr4_CHB_r22_nr.b36_fwd.phased"
hm2_chr4_chb_jpt = "hm2_ADH1B/hm2_to_3_chr4_JPT+CHB_r22_nr.b36_fwd.phased"
# SENP1, CMS & nonCMS
senp1_andean = "sweeps_hm3/chr12.senp1.b37.phased"
# senp1_andean = "sweeps_hm3/chr12.senp1-10kb-pad.b37.phased"
# senp1_andean = "sweeps_hm3/chr12.senp1-region.b37.phased"
# ANP32D, CMS & nonCMS
anp32d_andean = "sweeps_hm3/chr12.anp32d.b37.phased"
# anp32d_andean = "sweeps_hm3/chr12.anp32d-10kb-pad.b37.phased"
# anp32d_andean = "sweeps_hm3/chr12.anp32d-region.b37.phased"
# joint SENP1 and ANP32D in CMS & non-CMS
joint_andean = "sweeps_hm3/chr12.joint-10kb-pad.b37.phased"
# CMS & nonCMS sweeps
senp1_andean = "sweeps_hm3/SENP1.impute.b37.phased"
anp32d_andean = "sweeps_hm3/ANP32D.impute.b37.phased"
arid1b_andean = "sweeps_hm3/ARID1B.impute.b37.phased"
cd3e_andean = "sweeps_hm3/CD3E.impute.b37.phased"
cnnm1_andean = "sweeps_hm3/CNNM1.impute.b37.phased"
duox_andean = "sweeps_hm3/DUOX.impute.b37.phased"
gusbp4_andean = "sweeps_hm3/GUSBP4.impute.b37.phased"
pbx4_andean = "sweeps_hm3/PBX4.impute.b37.phased"
susd5_andean = "sweeps_hm3/SUSD5.impute.b37.phased"
# selective sweeps to plot
sweeps = {
# known sweeps
r"LCT": (hm3_chr2_ceu, "rs4988235"),
r"PSCA": (hm3_chr8_yri, "rs2294008"),
r"TRPV6": (hm3_chr7_ceu, "rs4987682"),
r"ADH1B": (hm2_chr4_chb_jpt, "rs1229984"),
r"EDAR": (hm2_chr2_chb_jpt, "rs3827760"),
# CMS & nonCMS sweeps
# r"SENP1": (senp1_andean, None),
# r"ANP32D": (anp32d_andean, None),
# r"ARID1B": (arid1b_andean, None),
# r"CD3E": (cd3e_andean, None),
# r"CNNM1": (cnnm1_andean, None),
# r"DUOX": (duox_andean, None),
# r"GUSBP4": (gusbp4_andean, None),
# r"PBX4": (pbx4_andean, None),
# r"SUSD5": (susd5_andean, None),
# r"SENP1+NP32D": (joint_andean, None),
}
# phenotype data table
# used when no knowledge of adaptive allele
phenotype_table_fpath = "cms_status.txt"
phenotypes = ["Dizz", "Physical weakness 1", "Mental Fatigue 1", "Anorex", "Musc Weak",
"Joint", "Breathlessness 2", "Palpitations 2", "Sleep disturb",
"Cyanosis of lips, face or fingers 2", "Injected Conjunctivae 2", "Dilat",
"Paresth", "Head", "Tinn", "Hct", "Sat", "Hct-num", "Sat%", "TOTAL", "Blood", "Skin"]
phenotypes_to_regress = {
"TOTAL": r"CMS \,\, score",
# "Sat%": r"O_2 \,\, Sat",
# "Hct-num": r"Hematocrit"
}
c1 = brewer2mpl.get_map('Set1', 'Qualitative', 9).mpl_colors
###############################################################################
def go_focal_site_unknown(sweep_name, hapmap_chr_file):
''' Run full CFP classification on given sweep '''
global chimp_polar, no_polar
print "==============================================="
print "Working on (unknown focal site) sweep %s..." % sweep_name
print "===============================================\n"
# init allele polatization stats
chimp_polar, no_polar = 0.0, 0.0
# read haplotype matrix, and chimp-polarize alleles (updates polarization stats)
hap_mat, col_freqs, ba_col, positions = read_phased_hapmap_chr(hapmap_chr_file, None)
# clean haplotype matrix, removes all-0 columns (non-segragating)
# including alleles for sites with no Chimp data, artificially set to all-0
hap_mat, col_freqs, ba_col, positions = hap_read.remove_zero_cols(hap_mat,
col_freqs,
ba_col,
positions)
# sanity check
assert len(hap_ids) == len(hap_mat), "Error: # haplotype IDs != # haplotypes"
# read phenotypes
pheno_df = pd.read_csv(phenotype_table_fpath, sep='\t', header=0)
pheno_df = pheno_df.set_index('Sample ID')
# create output files
regress_file = open("regress_stats_%s.txt" % sweep_name, 'w')
cfp_file = open("cfp_scores_variables_%s.txt" % sweep_name, 'w')
# decide on 'center' site, and set radii
center_col = find_center_with_offset(positions, offset=0)
radii = np.arange(10000, (max(positions) - min(positions))/2.0, 5000)
radii = [(max(positions) - min(positions))/2.0]
# write file headers
# regress_file.write("#radius\tr^2\tp-val\tstd-err\n")
cfp_file.write("#indID\tmin(CFP1,CFP2)\tgroup\n")
# iterate radii from center
for rad in radii:
# compute CFP scores
left_idx, right_idx = get_boundary_idx(positions, center_col, rad)
hap_scores = cfp.haplotype_CFP_scores(hap_mat[:, left_idx:right_idx],
col_freqs[left_idx:right_idx], norm=norm)
for pheno, pheno_lab in phenotypes_to_regress.iteritems():
for f_name, f in {"min": np.min}.iteritems(): # "max": np.max, "mean": np.mean,
# paired haplotype CFP scores -> individual CFP scores
indv_scores = compound_hap_CFPs(zip(hap_scores[0::2], hap_scores[1::2]), c_func=f)
# reorder phenotype values to match CFP scores
ind_ids = [hid[:-2] for hid in hap_ids[0::2]]
reord_pheno = np.array([pheno_df.xs(iid)[pheno] for iid in ind_ids])
reord_group = np.array([pheno_df.xs(iid)["Group"] for iid in ind_ids])
# regress on phenotypes
# slope, intercept, r_val, p_val, std_e = stats.linregress(reord_pheno, indv_scores)
# mod = sm.OLS(reord_pheno, sm.add_constant(indv_scores, prepend=False))
# res = mod.fit()
# print res.summary()
# outliers
# outl = sorted(izip(res.resid, ind_ids, indv_scores, reord_pheno, reord_group),
# reverse=True)
# print "pos e:", ["(%s,%.2f,%g,%g,%s)" %
# (iid, resid, phen, i_scr, grp)
# for resid, iid, i_scr, phen, grp in outl[:4]]
# print "neg e:", ["(%s,%.2f,%g,%g,%s)" %
# (iid, resid, phen, i_scr, grp)
# for resid, iid, i_scr, phen, grp in outl[::-1][:4]]
# plot it
# plot_lin_reg(reord_pheno, indv_scores,
# slope, intercept, r_val, p_val, std_e,
# sweep_name, pheno_lab, f_name, reord_group)
# regress_file.write("{pheno}\t{func}\t{r2}\t{p}\t{stderr}\n".format(pheno=pheno,
# func=f_name,
# r2=r_val**2,
# p=p_val,
# stderr=std_err))
cfp_file.write("\n".join(["%s\t%g\t%s" % (i_id, i_scr, i_grp)
for i_id, i_scr, i_grp in izip(ind_ids, indv_scores, reord_group)]))
# regress_file.close()
cfp_file.close()
###############################################################################
def plot_lin_reg(x, y, m, b, r, p, std_err, sweep_name, pheno_lab, func_name, group):
# init plot
fig = plt.figure(figsize=(8, 6)) # width, height
rcParams['xtick.direction'] = 'out'
rcParams['ytick.direction'] = 'out'
matplotlib.rc('text', usetex=True)
# gs = gridspec.GridSpec(3, 3, width_ratios=[1, 1], left=0.11, bottom=0.06,
# right=0.92, top=0.97, wspace=0.3, hspace=0.2)
# ax = fig.add_subplot(gs[0, 0])
fig.subplots_adjust(bottom=0.09, wspace=0.3, left=0.1, right=0.92, top=0.94)
ax = fig.add_subplot(111)
# plot data points
ax.scatter(rand_jitter(x[group == "CMS"], max(x) - min(x)),
rand_jitter(y[group == "CMS"], max(y) - min(y)),
facecolor=c1[0], edgecolor='#262626', linewidths=0.5, alpha=0.85, s=30)
ax.scatter(rand_jitter(x[group == "Control"], max(x) - min(x)),
rand_jitter(y[group == "Control"], max(y) - min(y)),
facecolor=c1[1], edgecolor='#262626', linewidths=0.5, alpha=0.85, s=30)
# plot fitted line
xi = np.arange(min(x), max(x))
ax.plot(xi, m*xi+b, color='#262626', linestyle='--', linewidth=0.75)
# set axis range
ax.set_ylim([None, max(y)*1.15])
# plot info
if m > 0:
# bottom right
x_text, y_text = 0.10, 0.94
else:
# top right
x_text, y_text = 0.90, 0.94
ax.text(x_text, y_text,
r"\noindent $R^2={:.2f}$\\$P\,\,={:.1e}$".format(r**2, p),
horizontalalignment='center',
verticalalignment='center',
transform=ax.transAxes)
# title
ax.set_title(r"$\mathbf{%s}$" % sweep_name)
ax.set_xlabel(r"$\mathbf{%s}$" % pheno_lab)
ax.set_ylabel(r"$\mathbf{%s(CFP1, CFP2)}$" % func_name)
# pretify
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_linewidth(0.5)
ax.spines['bottom'].set_color('#262626')
ax.spines['left'].set_linewidth(0.5)
ax.spines['left'].set_color('#262626')
# ticks only bottom and left
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
ax.tick_params(axis='x', colors='#262626')
ax.tick_params(axis='y', colors='#262626')
ax.xaxis.label.set_color('#262626')
ax.yaxis.label.set_color('#262626')
# save figure
plt.savefig('%s/%s.png' % (save_to_dir, sweep_name), dpi=300)
plt.savefig('%s/pdf/%s.pdf' % (save_to_dir, sweep_name))
plt.show()
plt.close(fig)
###############################################################################
def compound_hap_CFPs(cfp_score_pairs, c_func=np.mean):
""" For each pair of CFP scores, compute a single (compound) score with the given function.
"""
ans = []
for hap1_cfp, hap2_cfp in cfp_score_pairs:
ans.append(c_func([hap1_cfp, hap2_cfp]))
return np.array(ans)
###############################################################################
def go_focal_site_known(sweep_name, hapmap_chr_file, focal_rsid):
''' Run full CFP classification on given sweep '''
global chimp_polar, no_polar
print "============================================"
print "Working on (known focal site) sweep %s..." % sweep_name
print "============================================\n"
# init allele polatization stats
chimp_polar, no_polar = 0.0, 0.0
# read haplotype matrix, and chimp-polarize alleles (updates polarization stats)
hap_mat, col_freqs, ba_col, positions = read_phased_hapmap_chr(hapmap_chr_file, focal_rsid)
if not ba_col:
print "\nError: focal site not in data!\n"
sys.exit(1)
# clean haplotype matrix, removes all-0 columns (non-segregating)
# may also remove sites with no Chimp data (if artificially set to all-0)
hap_mat, col_freqs, ba_col, positions = hap_read.remove_zero_cols(hap_mat,
col_freqs,
ba_col,
positions)
# sanity check
if len(hap_ids) != len(hap_mat):
print "Warning: # haplotype IDs != # haplotypes"
# find and report the focal SNP state
carrier_status = hap_mat[:, ba_col]
print "Focal SNP (%s) freq. %g (of %i haplotypes)" % (focal_rsid,
col_freqs[ba_col],
len(hap_mat))
# print np.array(hap_mat[:, ba_col], dtype=int), "\n"
# output files
acc_rad_fname = "acc_vs_radius_%s.txt" % sweep_name
scores_fname = "cfp_scores_labels_%s.txt" % sweep_name
acc_file, cfp_file = open(acc_rad_fname, 'w'), open(scores_fname, 'w')
# file headers
cfp_file.write("#cfp\tpred-label\tP(carr)\tP(non-carr)\ttrue-label\n")
if report_balanced_acc:
acc_file.write("#radius\tnum-snps\tb-acc\tsil-score\tbic\taic\tp-val\n")
else:
acc_file.write("#radius\tnum-snps\tacc\tsil-score\tbic\taic\tp-val\n")
# CFP scores at increasing radii around focal SNP
final_scores_clusters = []
acc_best, acc_best_r, acc_best_nsnps = 0, None, None
for r in radii:
left_idx, right_idx = get_boundary_idx(positions, ba_col, r)
# 1. CFP scores
hap_scores = cfp.haplotype_CFP_scores(hap_mat[:, left_idx:right_idx],
col_freqs[left_idx:right_idx], norm=norm)
# 2. cluster & predict
pred_status, p_ycarr, p_ncarr, bic, aic, sil_score = cfp.cluster_CFP_scores_GMM(hap_scores)
# pred_status, sil_score = cfp.cluster_CFP_scores(hap_scores)
# sanity check
if len(hap_scores[pred_status == 0]) > 0 and len(hap_scores[pred_status == 1]) > 0:
if not max(hap_scores[pred_status == 0]) <= min(hap_scores[pred_status == 1]):
print "Warning: radius=%i, max-0 %g min-1 %g" % (r,
max(hap_scores[pred_status == 0]),
min(hap_scores[pred_status == 1]))
# 3. P-value
zscore, pval = stats.ranksums(hap_scores[carrier_status == 0],
hap_scores[carrier_status == 1])
logp = -np.log10(pval) # -np.log2(pval)
# generate report
acc, b_acc, tpr, fpr = cfp.clustering_report(pred_status, carrier_status)
# remember best
# if( acc >= acc_best ):
if r == 25000:
if report_balanced_acc:
acc_best, acc_best_r, acc_best_nsnps = b_acc, r, right_idx - left_idx
else:
acc_best, acc_best_r, acc_best_nsnps = acc, r, right_idx - left_idx
final_scores_clusters = zip(hap_scores, pred_status, p_ycarr, p_ncarr, carrier_status)
# report accuracy & radius
if report_balanced_acc:
acc_file.write("%i\t%i\t%g\t%g\t%g\t%g\t%g\n" % (r, right_idx-left_idx, b_acc,
sil_score, bic, aic, logp))
else:
acc_file.write("%i\t%i\t%g\t%g\t%g\t%g\t%g\n" % (r, right_idx-left_idx, acc,
sil_score, bic, aic, logp))
# report best
for tup in final_scores_clusters:
cfp_file.write("%g\t%i\t%g\t%g\t%i\n" % tup)
acc_file.close()
cfp_file.close()
print "\nBest accuracy: %g (radius %i bp)" % (acc_best, acc_best_r)
print "\nOutput in '%s' and '%s'\n" % (acc_rad_fname, scores_fname)
###############################################################################
def find_center_with_offset(positions, offset=0):
''' returns the index in 'positions' that is closest to the
center of the interval, plus 'offset'
'''
real_center = (min(positions) + max(positions)) / 2.0 + offset
center_loci = min(positions, key=lambda x: abs(x-real_center))
return np.where(positions == center_loci)
###############################################################################
def get_boundary_idx(pos, ba_col, radius):
left = bisect.bisect_left(pos, pos[ba_col] - radius)
right = bisect.bisect_right(pos, pos[ba_col] + radius)
return left, right
###############################################################################
def read_chimp_allele_table(chimp_allele_file):
''' Read Chimpanzee allele for all HapMap loci into dict '''
global chimp_alleles
sys.stdout.write("\nReading Chimp alleles table...")
sys.stdout.flush()
fh = open(chimp_allele_file, 'r')
for line in fh:
# skip header
if line.startswith("#"):
continue
# parse allele
line_spl = line.rstrip().split()
rs_id, strand = line_spl[4], line_spl[6]
obs_alleles = set(line_spl[8].split("/"))
chimp_a = line_spl[13]
# save
if(strand == '-'):
chimp_alleles[rs_id] = [flip_revcomp(chimp_a), flip_revcomp_set(obs_alleles)]
else:
chimp_alleles[rs_id] = [chimp_a, obs_alleles]
fh.close()
print "Done.\n"
###############################################################################
def read_phased_hapmap_chr(f_path, focal_rsid):
''' Read HapMap3 phased chromosome file
Updates the global variable 'hap_ids' with the identities of haplotypes.
'''
global hap_ids
print "Reading phased data from '%s' (focal: %s)" % (f_path, focal_rsid)
sys.stdout.flush()
# init
snp_mat, positions, ba_col = [], [], None
# read phased HapMap3 file
with open(f_path, 'r') as hapmap_fh:
for i, line in enumerate(hapmap_fh):
# header
if line.startswith("rsID"):
hap_ids = line.rstrip().split()[2:]
continue
# parse SNP info
line_spl = line.rstrip().split()
rsid, pos, alleles = line_spl[0], int(line_spl[1]), line_spl[2:]
# save column of focal site
if focal_rsid == rsid:
ba_col = i-1
# polarize alleles based on Chimp allele
alleles = chimp_0(rsid, line_spl[2:])
snp_mat.append(alleles) # save SNP as row
positions.append(pos) # save position
# haplotype matrix & positions
snp_mat, positions = np.array(snp_mat), np.array(positions)
hap_mat = snp_mat.T
# allele frequencies
col_freqs = np.sum(hap_mat, axis=0) / float(len(hap_mat))
# report summary
print ("\tSNPs read: %i (chimp-polarized %.2f, discarded %.2f).\n" %
(i, chimp_polar/float(i), no_polar/float(i)))
return hap_mat, col_freqs, ba_col, positions
###############################################################################
def allele_sanity_and_flip(chimp_a, chimp_set, loc_allele_list):
''' Check sanity of observed HapMap alleles vs. Chimp data
Return the sanity {True, False} & Chimp allele (flipped, if necessary)
'''
obs_loc_set = set(loc_allele_list)
if obs_loc_set.issubset(chimp_set):
# all good
return True, chimp_a
else:
# observed HapMap alleles not a subset of Chimp
if DEBUG:
print ("HapMap alleles (%s) not subset of Chimp (%s)" %
(','.join(e for e in obs_loc_set), ','.join(e for e in chimp_set)))
# check if flip allele issue
if obs_loc_set.issubset(flip_revcomp_set(chimp_set)):
if DEBUG:
print ("HapMap subset after flipping chimp (%s)" %
','.join(e for e in flip_revcomp_set(chimp_set)), "\n")
# chimp allele was flipped, flip back
return True, flip_revcomp(chimp_a)
else:
# just bad data
return False, None
###############################################################################
def chimp_0(rsID, locus_alleles):
''' convert based on chimp allele if possible, otherwise major/minor '''
global chimp_polar, no_polar
if rsID in chimp_alleles:
# variant has Chimp allele data
# sanity check
sane, chimp_a = allele_sanity_and_flip(chimp_alleles[rsID][0],
chimp_alleles[rsID][1],
locus_alleles)
if sane:
# good data
chimp_polar += 1
else:
# bad Chimp data for site, set to all-0 (removed later)
no_polar += 1
return np.zeros(len(locus_alleles))
# convert
for i, a in enumerate(locus_alleles):
if a == chimp_a:
locus_alleles[i] = 0.0
else:
locus_alleles[i] = 1.0
return np.array(locus_alleles)
else:
# no Chimp data for site
if DISCARD_NO_CHIMP:
# set to all-0 (removed later)
no_polar += 1
return np.zeros(len(locus_alleles))
elif rsID in ref_alleles:
# use reference to set major/minor
ref_a = ref_alleles[rsID]
for i, a in enumerate(locus_alleles):
if a == ref_a:
locus_alleles[i] = 0.0
else:
locus_alleles[i] = 1.0
return np.array(locus_alleles)
else:
print "Cannot set reference allele without reference data. Missing rsID %s" % rsID
sys.exit(1)
###############################################################################
def flip_revcomp(base):
''' reverse complement base '''
if base == 'A':
return 'T'
elif base == 'G':
return 'C'
elif base == 'C':
return 'G'
elif base == 'T':
return 'A'
else:
"Error: flip_revcomp() got NON-DNA!"
###############################################################################
def flip_revcomp_set(bases):
''' reverse complement set '''
ans = set()
for b in bases:
ans.add(flip_revcomp(b))
return ans
###############################################################################
def read_ref_allele_table(f_path):
""" Read reference alleles data from file.
File expected in the HapMap2 or IMPUTE SNP 'legend' format.
"""
global ref_alleles, DISCARD_NO_CHIMP
DISCARD_NO_CHIMP = False # reference alleles file was supplied, will be used
sys.stdout.write("Reading reference alleles table...")
sys.stdout.flush()
with open(f_path, 'r') as ref_allele_fh:
for line in ref_allele_fh:
if line.startswith("ID"):
continue
rsID, loc, ref_a, alt_a = line.rstrip().split()
ref_alleles[rsID] = ref_a
print "Done.\n"
###############################################################################
def major_0(locus_alleles):
''' !! DEPRECATED !!
Convert allele list from {A,C,G,T} to {0,1} based on observed major & minor allele.
This effectively fold the site's frequency, i.e. sets it to max of (f, 1-f).
'''
tally = Counter()
for a in locus_alleles:
tally[a] += 1
major_a = max(tally.iteritems(), key=operator.itemgetter(1))[0]
minor_a = min(tally.iteritems(), key=operator.itemgetter(1))[0]
if(minor_a == major_a):
# fixed in the sample, all 0
for i in range(len(locus_alleles)):
locus_alleles[i] = 0.0
else:
# convert minor/major to 0/1
for i, a in enumerate(locus_alleles):
if(a == minor_a):
locus_alleles[i] = 1.0
elif(a == major_a):
locus_alleles[i] = 0.0
else:
print "Error: >2 alleles in HapMap chromsome row\n"
sys.exit(1)
return np.array(locus_alleles)
###############################################################################
def rand_jitter(arr, range_size):
return arr + np.random.randn(len(arr)) * (JITTER_FRAC*range_size)
###############################################################################
# MAIN #
###############################################################################
if __name__ == '__main__':
if len(sys.argv) not in [2, 3]:
print ("\n\tusage: %s <path/to/chimp-alleles.txt> [path/to/ref-alleles.txt]\n"
% (os.path.basename(sys.argv[0])))
sys.exit(1)
# first, read chimp allele data
read_chimp_allele_table(sys.argv[1])
if len(sys.argv) == 3:
# read reference allele data
read_ref_allele_table(sys.argv[2])
# iterate sweeps
for sweep_name, (hapmap_file, focal_rsID) in sweeps.iteritems():
if focal_rsID:
# run CFP classification
go_focal_site_known(sweep_name, hapmap_file, focal_rsID)
else:
# run CFP correlation
go_focal_site_unknown(sweep_name, hapmap_file)