-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimator_rem.py
650 lines (577 loc) · 26.3 KB
/
estimator_rem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
"""
EstimatorRem class, modified from qiskit_aer.primitives.Estimator
"""
from __future__ import annotations
from collections import defaultdict
from collections.abc import Sequence
from copy import copy
from warnings import warn
import numpy as np
from qiskit.circuit import ParameterExpression, QuantumCircuit
from qiskit.compiler import transpile
from qiskit.opflow import PauliSumOp
from qiskit.primitives import BaseEstimator, EstimatorResult
from qiskit.primitives.primitive_job import PrimitiveJob
from qiskit.primitives.utils import _circuit_key, _observable_key, init_observable
from qiskit.providers import Options
from qiskit.quantum_info import Pauli, PauliList
from qiskit.quantum_info.operators.base_operator import BaseOperator
from qiskit.result.models import ExperimentResult
import functools
from qiskit_aer.aererror import AerError
from qiskit_aer.backends.aer_simulator import AerSimulator
class EstimatorRem(BaseEstimator):
"""
Aer implmentation of Estimator.
:Run Options:
- **shots** (None or int) --
The number of shots. If None and approximation is True, it calculates the exact
expectation values. Otherwise, it calculates expectation values with sampling.
- **seed** (int) --
Set a fixed seed for the sampling.
.. note::
Precedence of seeding for ``seed_simulator`` is as follows:
1. ``seed_simulator`` in runtime (i.e. in :meth:`run`)
2. ``seed`` in runtime (i.e. in :meth:`run`)
3. ``seed_simulator`` of ``backend_options``.
4. default.
``seed`` is also used for sampling from a normal distribution when approximation is True.
When combined with the approximation option, we get the expectation values as follows:
* shots is None and approximation=False: Return an expectation value with sampling-noise w/
warning.
* shots is int and approximation=False: Return an expectation value with sampling-noise.
* shots is None and approximation=True: Return an exact expectation value.
* shots is int and approximation=True: Return expectation value with sampling-noise using a
normal distribution approximation.
"""
def __init__(
self,
*,
backend_options: dict | None = None,
transpile_options: dict | None = None,
run_options: dict | None = None,
approximation: bool = False,
skip_transpilation: bool = False,
abelian_grouping: bool = True,
measurement_noise_matrix_inv
):
"""
Args:
backend_options: Options passed to AerSimulator.
transpile_options: Options passed to transpile.
run_options: Options passed to run.
approximation: If True, it calculates expectation values with normal distribution
approximation.
skip_transpilation: If True, transpilation is skipped.
abelian_grouping: Whether the observable should be grouped into commuting.
If approximation is True, this parameter is ignored and assumed to be False.
measurement_noise_matrix_inv: the inversed measurement error matrices for readout error mitigation.
"""
super().__init__(options=run_options)
backend_options = {} if backend_options is None else backend_options
method = (
"density_matrix" if approximation and "noise_model" in backend_options else "automatic"
)
self._backend = AerSimulator(method=method)
self._backend.set_options(**backend_options)
self._transpile_options = Options()
if transpile_options is not None:
self._transpile_options.update_options(**transpile_options)
self.approximation = approximation
self._skip_transpilation = skip_transpilation
self._cache: dict[tuple[tuple[int], tuple[int], bool], tuple[dict, dict]] = {}
self._transpiled_circuits: dict[int, QuantumCircuit] = {}
self._layouts: dict[int, list[int]] = {}
self._circuit_ids: dict[tuple, int] = {}
self._observable_ids: dict[tuple, int] = {}
self._abelian_grouping = abelian_grouping
self._measurement_noise_matrix_inv = measurement_noise_matrix_inv
def _call(
self,
circuits: Sequence[int],
observables: Sequence[int],
parameter_values: Sequence[Sequence[float]],
**run_options,
) -> EstimatorResult:
seed = run_options.pop("seed", None)
if seed is not None:
run_options.setdefault("seed_simulator", seed)
if self.approximation:
return self._compute_with_approximation(
circuits, observables, parameter_values, run_options, seed
)
else:
return self._compute(circuits, observables, parameter_values, run_options)
def _run(
self,
circuits: Sequence[QuantumCircuit],
observables: Sequence[BaseOperator | PauliSumOp],
parameter_values: Sequence[Sequence[float]],
**run_options,
) -> PrimitiveJob:
circuit_indices: list = []
for circuit in circuits:
index = self._circuit_ids.get(_circuit_key(circuit))
if index is not None:
circuit_indices.append(index)
else:
circuit_indices.append(len(self._circuits))
self._circuit_ids[_circuit_key(circuit)] = len(self._circuits)
self._circuits.append(circuit)
self._parameters.append(circuit.parameters)
observable_indices: list = []
for observable in observables:
observable = init_observable(observable)
index = self._observable_ids.get(_observable_key(observable))
if index is not None:
observable_indices.append(index)
else:
observable_indices.append(len(self._observables))
self._observable_ids[_observable_key(observable)] = len(self._observables)
self._observables.append(observable)
job = PrimitiveJob(
self._call,
circuit_indices,
observable_indices,
parameter_values,
**run_options,
)
job.submit()
return job
def _compute(self, circuits, observables, parameter_values, run_options):
if "shots" in run_options and run_options["shots"] is None:
warn(
"If `shots` is None and `approximation` is False, "
"the number of shots is automatically set to backend options' "
f"shots={self._backend.options.shots}.",
RuntimeWarning,
)
# Key for cache
key = (tuple(circuits), tuple(observables), self.approximation)
# Create expectation value experiments.
if key in self._cache: # Use a cache
experiments_dict, obs_maps = self._cache[key]
exp_map = self._pre_process_params(circuits, observables, parameter_values, obs_maps)
experiments, parameter_binds = self._flatten(experiments_dict, exp_map)
post_processings = self._create_post_processing(
circuits, observables, parameter_values, obs_maps, exp_map
)
else:
self._transpile_circuits(circuits)
circ_obs_map = defaultdict(list)
# Aggregate observables
for circ_ind, obs_ind in zip(circuits, observables):
circ_obs_map[circ_ind].append(obs_ind)
experiments_dict = {}
obs_maps = {} # circ_ind => obs_ind => term_ind (Original Pauli) => basis_ind
# Group and create measurement circuit
for circ_ind, obs_indices in circ_obs_map.items():
pauli_list = sum(
[self._observables[obs_ind].paulis for obs_ind in obs_indices]
).unique()
if self._abelian_grouping:
pauli_lists = pauli_list.group_commuting(qubit_wise=True)
else:
pauli_lists = [PauliList(pauli) for pauli in pauli_list]
obs_map = defaultdict(list)
for obs_ind in obs_indices:
for pauli in self._observables[obs_ind].paulis:
for basis_ind, pauli_list in enumerate(pauli_lists):
if pauli in pauli_list:
obs_map[obs_ind].append(basis_ind)
break
obs_maps[circ_ind] = obs_map
bases = [_paulis2basis(pauli_list) for pauli_list in pauli_lists]
if len(bases) == 1 and not bases[0].x.any() and not bases[0].z.any(): # identity
break
meas_circuits = [self._create_meas_circuit(basis, circ_ind) for basis in bases]
circuit = (
self._circuits[circ_ind]
if self._skip_transpilation
else self._transpiled_circuits[circ_ind]
)
experiments_dict[circ_ind] = self._combine_circs(circuit, meas_circuits)
self._cache[key] = experiments_dict, obs_maps
exp_map = self._pre_process_params(circuits, observables, parameter_values, obs_maps)
# Flatten
experiments, parameter_binds = self._flatten(experiments_dict, exp_map)
# Create PostProcessing
post_processings = self._create_post_processing(
circuits, observables, parameter_values, obs_maps, exp_map
)
# Run experiments
if experiments:
results = (
self._backend.run(
circuits=experiments,
parameter_binds=parameter_binds if any(parameter_binds) else None,
**run_options,
)
.result()
.results
)
else:
results = []
# Post processing (calculate expectation values)
expectation_values, metadata = zip(
*(post_processing.run(results) for post_processing in post_processings)
)
return EstimatorResult(np.real_if_close(expectation_values), list(metadata))
def _pre_process_params(self, circuits, observables, parameter_values, obs_maps):
exp_map = defaultdict(dict) # circ_ind => basis_ind => (parameter, parameter_values)
for circ_ind, obs_ind, param_val in zip(circuits, observables, parameter_values):
self._validate_parameter_length(param_val, circ_ind)
parameter = self._parameters[circ_ind]
for basis_ind in obs_maps[circ_ind][obs_ind]:
if (
circ_ind in exp_map
and basis_ind in exp_map[circ_ind]
and len(self._parameters[circ_ind]) > 0
):
param_vals = exp_map[circ_ind][basis_ind][1]
if param_val not in param_vals:
param_vals.append(param_val)
else:
exp_map[circ_ind][basis_ind] = (parameter, [param_val])
return exp_map
@staticmethod
def _flatten(experiments_dict, exp_map):
experiments_list = []
parameter_binds = []
for circ_ind in experiments_dict:
experiments_list.extend(experiments_dict[circ_ind])
for _, (parameter, param_vals) in exp_map[circ_ind].items():
parameter_binds.extend(
[
{
param: [param_val[i] for param_val in param_vals]
for i, param in enumerate(parameter)
}
]
)
return experiments_list, parameter_binds
def _create_meas_circuit(self, basis: Pauli, circuit_index: int):
qargs = np.arange(basis.num_qubits)[basis.z | basis.x]
meas_circuit = QuantumCircuit(basis.num_qubits, len(qargs))
for clbit, qarg in enumerate(qargs):
if basis.x[qarg]:
if basis.z[qarg]:
meas_circuit.sdg(qarg)
meas_circuit.h(qarg)
meas_circuit.measure(qarg, clbit)
meas_circuit.metadata = {"basis": basis}
if self._skip_transpilation:
return meas_circuit
transpile_opts = copy(self._transpile_options)
transpile_opts.update_options(initial_layout=self._layouts[circuit_index])
return transpile(meas_circuit, self._backend, **transpile_opts.__dict__)
@staticmethod
def _combine_circs(circuit: QuantumCircuit, meas_circuits: list[QuantumCircuit]):
circs = []
for meas_circuit in meas_circuits:
new_circ = circuit.copy()
for creg in meas_circuit.cregs:
new_circ.add_register(creg)
new_circ.compose(meas_circuit, inplace=True)
_update_metadata(new_circ, meas_circuit.metadata)
circs.append(new_circ)
return circs
@staticmethod
def _calculate_result_index(circ_ind, obs_ind, term_ind, param_val, obs_maps, exp_map) -> int:
basis_ind = obs_maps[circ_ind][obs_ind][term_ind]
result_index = 0
for _circ_ind, basis_map in exp_map.items():
for _basis_ind, (_, (_, param_vals)) in enumerate(basis_map.items()):
if circ_ind == _circ_ind and basis_ind == _basis_ind:
result_index += param_vals.index(param_val)
return result_index
result_index += len(param_vals)
raise AerError("Bug. Please report from issue: https://github.com/Qiskit/qiskit-aer/issues")
def _create_post_processing(
self, circuits, observables, parameter_values, obs_maps, exp_map
) -> list[_PostProcessing]:
post_processings = []
for circ_ind, obs_ind, param_val in zip(circuits, observables, parameter_values):
result_indices: list[int | None] = []
paulis = []
coeffs = []
observable = self._observables[obs_ind]
for term_ind, (pauli, coeff) in enumerate(zip(observable.paulis, observable.coeffs)):
# Identity
if not pauli.x.any() and not pauli.z.any():
result_indices.append(None)
paulis.append(PauliList(pauli))
coeffs.append([coeff])
continue
result_index = self._calculate_result_index(
circ_ind, obs_ind, term_ind, param_val, obs_maps, exp_map
)
if result_index in result_indices:
i = result_indices.index(result_index)
paulis[i] += pauli
coeffs[i].append(coeff)
else:
result_indices.append(result_index)
paulis.append(PauliList(pauli))
coeffs.append([coeff])
post_processings.append(_PostProcessing(result_indices, paulis, coeffs, self._measurement_noise_matrix_inv))
return post_processings
def _compute_with_approximation(
self, circuits, observables, parameter_values, run_options, seed
):
# Key for cache
key = (tuple(circuits), tuple(observables), self.approximation)
shots = run_options.pop("shots", None)
# Create expectation value experiments.
if key in self._cache: # Use a cache
parameter_binds = defaultdict(dict)
for i, j, value in zip(circuits, observables, parameter_values):
self._validate_parameter_length(value, i)
for k, v in zip(self._parameters[i], value):
if k in parameter_binds[(i, j)]:
parameter_binds[(i, j)][k].append(v)
else:
parameter_binds[(i, j)][k] = [v]
experiment_manager = self._cache[key]
experiment_manager.parameter_binds = list(parameter_binds.values())
else:
self._transpile_circuits(circuits)
experiment_manager = _ExperimentManager()
for i, j, value in zip(circuits, observables, parameter_values):
if (i, j) in experiment_manager.keys:
self._validate_parameter_length(value, i)
experiment_manager.append(
key=(i, j),
parameter_bind=dict(zip(self._parameters[i], value)),
)
else:
self._validate_parameter_length(value, i)
circuit = (
self._circuits[i].copy()
if self._skip_transpilation
else self._transpiled_circuits[i].copy()
)
observable = self._observables[j]
if shots is None:
circuit.save_expectation_value(observable, self._layouts[i])
else:
for term_ind, pauli in enumerate(observable.paulis):
circuit.save_expectation_value(
pauli, self._layouts[i], label=str(term_ind)
)
experiment_manager.append(
key=(i, j),
parameter_bind=dict(zip(self._parameters[i], value)),
experiment_circuit=circuit,
)
self._cache[key] = experiment_manager
result = self._backend.run(
experiment_manager.experiment_circuits,
parameter_binds=experiment_manager.parameter_binds,
**run_options,
).result()
# Post processing (calculate expectation values)
if shots is None:
expectation_values = [
result.data(i)["expectation_value"] for i in experiment_manager.experiment_indices
]
metadata = [
{"simulator_metadata": result.results[i].metadata}
for i in experiment_manager.experiment_indices
]
else:
expectation_values = []
rng = np.random.default_rng(seed)
metadata = []
experiment_indices = experiment_manager.experiment_indices
for i in range(len(experiment_manager)):
combined_expval = 0.0
combined_var = 0.0
result_index = experiment_indices[i]
observable_key = experiment_manager.get_observable_key(i)
coeffs = np.real_if_close(self._observables[observable_key].coeffs)
for term_ind, expval in result.data(result_index).items():
var = 1 - expval**2
coeff = coeffs[int(term_ind)]
combined_expval += expval * coeff
combined_var += var * coeff**2
# Sampling from normal distribution
standard_error = np.sqrt(combined_var / shots)
expectation_values.append(rng.normal(combined_expval, standard_error))
metadata.append(
{
"variance": np.real_if_close(combined_var).item(),
"shots": shots,
"simulator_metadata": result.results[result_index].metadata,
}
)
return EstimatorResult(np.real_if_close(expectation_values), metadata)
def _validate_parameter_length(self, parameter, circuit_index):
if len(parameter) != len(self._parameters[circuit_index]):
raise ValueError(
f"The number of values ({len(parameter)}) does not match "
f"the number of parameters ({len(self._parameters[circuit_index])})."
)
def _transpile(self, circuits):
if self._skip_transpilation:
return circuits
return transpile(circuits, self._backend, **self._transpile_options.__dict__)
def _transpile_circuits(self, circuits):
if self._skip_transpilation:
for i in set(circuits):
num_qubits = self._circuits[i].num_qubits
self._layouts[i] = list(range(num_qubits))
return
for i in set(circuits):
if i not in self._transpiled_circuits:
circuit = self._circuits[i].copy()
circuit.measure_all()
num_qubits = circuit.num_qubits
circuit = self._transpile(circuit)
bit_map = {bit: index for index, bit in enumerate(circuit.qubits)}
layout = [bit_map[qr[0]] for _, qr, _ in circuit[-num_qubits:]]
circuit.remove_final_measurements()
self._transpiled_circuits[i] = circuit
self._layouts[i] = layout
def _expval_with_variance(counts) -> tuple[float, float]:
denom = 0
expval = 0.0
for bin_outcome, freq in counts.items():
outcome = int(bin_outcome, 16)
denom += freq
expval += freq * (-1) ** bin(outcome).count("1")
# Divide by total shots
expval /= denom
# Compute variance
variance = 1 - expval**2
return expval, variance
class _PostProcessing:
def __init__(
self,
result_indices: list[int],
paulis: list[PauliList],
coeffs: list[list[float]],
measurement_noise_matrix_inv
):
self._result_indices = result_indices
self._paulis = paulis
self._coeffs = [np.array(c) for c in coeffs]
self._measurement_noise_matrix_inv = measurement_noise_matrix_inv
def run(self, results: list[ExperimentResult]) -> tuple[float, dict]:
"""Coumpute expectation value.
Args:
results: list of ExperimentResult.
Returns:
tuple of an expectation value and metadata.
"""
combined_expval = 0.0
combined_var = 0.0
simulator_metadata = []
for c_i, paulis, coeffs in zip(self._result_indices, self._paulis, self._coeffs):
if c_i is None:
# Observable is identity
expvals, variances = np.array([1], dtype=complex), np.array([0], dtype=complex)
shots = 0
else:
result = results[c_i]
count = result.data.counts
shots = sum(count.values())
basis = result.header.metadata["basis"]
indices = np.where(basis.z | basis.x)[0]
measured_paulis = PauliList.from_symplectic(
paulis.z[:, indices], paulis.x[:, indices], 0
)
expvals, variances = _pauli_expval_with_variance(count, measured_paulis, self._measurement_noise_matrix_inv)
simulator_metadata.append(result.metadata)
combined_expval += np.dot(expvals, coeffs)
combined_var += np.dot(variances, coeffs**2)
metadata = {
"shots": shots,
"variance": np.real_if_close(combined_var).item(),
"simulator_metadata": simulator_metadata,
}
return combined_expval, metadata
def _update_metadata(circuit: QuantumCircuit, metadata: dict) -> QuantumCircuit:
if circuit.metadata:
circuit.metadata.update(metadata)
else:
circuit.metadata = metadata
return circuit
# import pdb
def _pauli_expval_with_variance(counts: dict, paulis: PauliList, measurement_noise_matrix_inv) -> tuple[np.ndarray, np.ndarray]:
# Diag indices
size = len(paulis)
diag_inds = _paulis2inds(paulis)
denom = 0 # Total shots for counts dict
expvals = np.zeros(size, dtype=float)
distribution = np.zeros(2**len(measurement_noise_matrix_inv))
for hex_outcome, freq in counts.items():
outcome = int(hex_outcome, 16)
distribution[outcome] = freq
denom += freq
distribution = distribution/denom
# apply the inversed matrices to mitigate readout errors
calib_matrix = functools.reduce(np.kron, measurement_noise_matrix_inv[::-1])
new_distribution = calib_matrix @ distribution
for outcome, val in enumerate(new_distribution):
for k in range(size):
coeff = (-1) ** _parity(diag_inds[k] & outcome)
expvals[k] += val * coeff
variances = 1 - expvals**2
return expvals, variances
def _paulis2inds(paulis: PauliList) -> list[int]:
nonid = paulis.z | paulis.x
packed_vals = np.packbits(nonid, axis=1, bitorder="little").astype( # pylint:disable=no-member
object
)
power_uint8 = 1 << (8 * np.arange(packed_vals.shape[1], dtype=object))
inds = packed_vals @ power_uint8
return inds.tolist()
def _parity(integer: int) -> int:
"""Return the parity of an integer"""
return bin(integer).count("1") % 2
def _paulis2basis(paulis: PauliList) -> Pauli:
return Pauli(
(
np.logical_or.reduce(paulis.z), # pylint:disable=no-member
np.logical_or.reduce(paulis.x), # pylint:disable=no-member
)
)
class _ExperimentManager:
def __init__(self):
self.keys: list[tuple[int, int]] = []
self.experiment_circuits: list[QuantumCircuit] = []
self.parameter_binds: list[dict[ParameterExpression, list[float]]] = []
self._input_indices: list[list[int]] = []
self._num_experiment: int = 0
def __len__(self):
return self._num_experiment
@property
def experiment_indices(self):
"""indices of experiments"""
return sum(self._input_indices, [])
def append(
self,
key: tuple[int, int],
parameter_bind: dict[ParameterExpression, float],
experiment_circuit: QuantumCircuit | None = None,
):
"""append experiments"""
if experiment_circuit is not None:
self.experiment_circuits.append(experiment_circuit)
if key in self.keys:
key_index = self.keys.index(key)
for k, vs in self.parameter_binds[key_index].items():
vs.append(parameter_bind[k])
self._input_indices[key_index].append(self._num_experiment)
else:
self.keys.append(key)
self.parameter_binds.append({k: [v] for k, v in parameter_bind.items()})
self._input_indices.append([self._num_experiment])
self._num_experiment += 1
def get_observable_key(self, index):
"""return key of observables"""
for i, inputs in enumerate(self._input_indices):
if index in inputs:
return self.keys[i][1]
raise AerError("Unexpected behavior.")