-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdensenet_bc.py
140 lines (116 loc) · 4.45 KB
/
densenet_bc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 3 19:14:24 2017
@author: sakurai
A Chainer implementation of DenseNet,
"Densely Connected Convolutional Networks"
https://arxiv.org/abs/1608.06993v3
"""
from types import SimpleNamespace
import numpy as np
import chainer
import chainer.functions as F
import chainer.links as L
import common
from links import BRCChain
class DensenetBC(chainer.ChainList):
'''
Args:
nums_units (list of int):
List of numbers of primitive functions, for each of dense-blocks.
growth_rate (int):
Output channels of each primitive H(x), i.e. `k`.
'''
def __init__(self, num_classes=10, nums_units=[20, 20, 20], growth_rate=12,
dropout_rate=0.2, compression_factor=0.5):
out_channels = growth_rate * 2
funcs = [L.Convolution2D(None, out_channels, 3, pad=1, nobias=True)]
for num_units in nums_units:
in_channels = out_channels
funcs.append(DenseBlockBC(in_channels, num_units, growth_rate,
dropout_rate))
in_channels += growth_rate * num_units
out_channels = int(np.ceil(in_channels * compression_factor))
funcs.append(TransitionLayer(in_channels, out_channels))
funcs.pop(-1) # in order to replace the last one with global pooling
funcs.append(
TransitionLayer(in_channels, num_classes, global_pool=True))
super(DensenetBC, self).__init__(*funcs)
self._num_classes = num_classes
def __call__(self, x):
conv1 = self[0]
blocks = self[1:] # dense, transition, ..., dense, transision
h = conv1(x)
for block in blocks:
h = block(h)
return h.reshape((-1, self._num_classes))
class DenseBlockBC(chainer.ChainList):
def __init__(self, in_channels, num_units, growth_rate=12, drop_rate=0.2):
'''
Args:
in_channels (int):
Input channels of the block.
num_units (int):
Number of primitive functions, i.e. H(x), in the block.
grouth_rate (int):
Hyper parameter `k` which is output channels of each H(x).
drop_rate (int):
Drop rate for dropout.
'''
units = []
for i in range(num_units):
units += [BRC1BRC3(in_channels, growth_rate)]
in_channels = in_channels + growth_rate
super(DenseBlockBC, self).__init__(*units)
self.drop_rate = drop_rate
def __call__(self, x):
for link in self:
h = F.dropout(link(x), self.drop_rate)
x = F.concat((x, h), axis=1)
return x
class BRC1BRC3(chainer.Chain):
def __init__(self, in_channels, out_channels, **kwargs):
bottleneck = 4 * out_channels
super(BRC1BRC3, self).__init__(
brc1=BRCChain(in_channels, bottleneck,
ksize=1, pad=0, nobias=True),
brc3=BRCChain(bottleneck, out_channels,
ksize=3, pad=1, nobias=True))
def __call__(self, x):
h = self.brc1(x)
y = self.brc3(h)
return y
class TransitionLayer(chainer.Chain):
def __init__(self, in_channels, out_channels, global_pool=False):
super(TransitionLayer, self).__init__(
brc=BRCChain(in_channels, out_channels, ksize=1))
self.global_pool = global_pool
def __call__(self, x):
h = self.brc(x)
if self.global_pool:
ksize = h.shape[2:]
else:
ksize = 2
y = F.average_pooling_2d(h, ksize)
return y
if __name__ == '__main__':
# Hyperparameters
hparams = SimpleNamespace()
hparams.gpu = 0
hparams.num_classes = 10
hparams.nums_units = [16, 16, 16]
hparams.growth_rate = 24 # out channels of each funcion in dense block
hparams.dropout_rate = 0.2
hparams.num_epochs = 300
hparams.batch_size = 50
hparams.optimizer = chainer.optimizers.NesterovAG
hparams.lr_init = 0.1
hparams.lr_decrease_rate = 0.1
hparams.weight_decay = 1e-4
hparams.max_expand_pixel = 8
hparams.epochs_decrease_lr = [150, 225]
model = DensenetBC(hparams.num_classes, hparams.nums_units,
hparams.growth_rate, hparams.dropout_rate)
result = common.train_eval(model, hparams)
best_model, best_test_loss, best_test_acc, best_epoch = result[:4]
train_loss_log, train_acc_log, test_loss_log, test_acc_log = result[4:]