-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_parity_rnn.py
64 lines (48 loc) · 1.59 KB
/
main_parity_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# -*- coding: utf-8 -*-
"""
Created on Fri May 5 11:26:20 2017
@author: ryuhei
As written in the paper, this does not work well.
"""
import numpy as np
import matplotlib.pyplot as plt
import chainer
import chainer.functions as F
import chainer.links as L
from datasets.parity import generate_parity_data
class RNN(chainer.Chain):
def __init__(self, in_size, s_size, out_size=1):
super(RNN, self).__init__(
l_xs=L.Linear(in_size, s_size),
l_ss=L.Linear(s_size, s_size),
l_sy=L.Linear(s_size, out_size))
self.in_size = in_size
self.s_size = s_size
def __call__(self, x):
xp = chainer.cuda.get_array_module(x)
batch_size, seq_len, dim_features = x.shape
s = xp.zeros((batch_size, self.s_size), dtype=x.dtype)
for t in range(seq_len):
x_t = x[:, t]
s = F.tanh(self.l_xs(x_t) + self.l_ss(s))
y = F.expand_dims(self.l_sy(s), 1)
return y
if __name__ == '__main__':
max_bit_len = 64
state_size = 128
batch_size = 128
learning_rate = 1e-4
model = RNN(max_bit_len, state_size)
optimizer = chainer.optimizers.Adam(learning_rate)
optimizer.setup(model)
optimizer.use_cleargrads(True)
for i in range(10000):
x, t = generate_parity_data(batch_size=batch_size,
max_bits=max_bit_len)
y = model(x)
loss = F.sigmoid_cross_entropy(y, t)
model.cleargrads()
loss.backward()
optimizer.update()
accuracy = F.binary_accuracy(y, t)
print(i, accuracy.data)