-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_logic_act.py
58 lines (44 loc) · 1.3 KB
/
main_logic_act.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# -*- coding: utf-8 -*-
"""
Created on Wed May 10 16:59:41 2017
@author: sakurai
"""
import numpy as np
import matplotlib.pyplot as plt
import chainer
import chainer.functions as F
from models import ACTNet
from datasets.logic import LogicDataset
if __name__ == '__main__':
use_gpu = False
seq_len = 3
max_ops = 3
min_ops = 1
state_size = 128
batch_size = 16
learning_rate = 1e-4
time_penalty = 0.001 # hyperparameter "tau"
dataset = LogicDataset(batch_size, seq_len, max_ops, min_ops)
dim_vector = dataset.dim_vector
model = ACTNet(dim_vector, state_size, 1)
if use_gpu:
model.to_gpu()
optimizer = chainer.optimizers.Adam(learning_rate)
optimizer.setup(model)
optimizer.use_cleargrads(True)
loss_log = []
for i in range(1000000):
print('{}:'.format(i), end=' ')
x, t = next(dataset)
y, ponder_cost = model(x)
loss = F.sigmoid_cross_entropy(y, t) + time_penalty * ponder_cost
model.cleargrads()
loss.backward()
loss_log.append(chainer.cuda.to_cpu(loss.data))
optimizer.update()
accuracy = F.binary_accuracy(y, t)
print('acc:', accuracy.data)
if i % 50 == 0:
plt.plot(loss_log, '.', markersize=1)
plt.grid()
plt.show()