-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
425 lines (369 loc) · 14.8 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import sys
import yaml
import builtins
import torch
from urllib.parse import urlparse
from transformers import (
HfArgumentParser,
TrainingArguments,
BitsAndBytesConfig,
AutoTokenizer,
AutoModelForCausalLM,
)
from peft import LoraConfig
from dataclasses import dataclass, field
from typing import Union
from utils import find_all_linear_names, get_local_rank
from trl import SFTTrainer
from sagemaker import TrainingInput
def print(*args, **kwargs):
if get_local_rank() == 0 or kwargs.get("all_ranks", False):
kwargs.pop("all_ranks", None)
builtins.print(*args, **kwargs)
@dataclass
class Arguments:
def config(self):
return self.__dict__
@dataclass
class TaskArguments(Arguments):
# should only be train or eval
project: str = field(default="huggingface", metadata={"help": "Project name"})
config: list[str] = field(default=None, metadata={"help": "Config section in the config file to use for this task"})
tmp_dir: str = field(default=".tmp", metadata={"help": "Temporary directory"})
save_dir: str = field(default=".", metadata={"help": "Save directory"})
clear_data_cache: bool = field(default=False, metadata={"help": "Clear data cache"})
@dataclass
class HuggingFaceHubArguments(Arguments):
pretrained_model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
trust_remote_code: bool = field(
default=False,
metadata={"help": "Whether to trust remote code when loading a pretrained model"},
)
revision: Union[str, None] = field(
default=None,
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
def tokenizer(self, **kwargs):
return AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=self.pretrained_model_name_or_path,
trust_remote_code=self.trust_remote_code,
revision=self.revision,
**kwargs,
)
def model(self, quantization_config: BitsAndBytesConfig = None, device_map=None, **kwargs):
return AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path=self.pretrained_model_name_or_path,
trust_remote_code=self.trust_remote_code,
revision=self.revision,
quantization_config=quantization_config,
device_map=device_map,
**kwargs,
)
@dataclass
class InstanceArguments(Arguments):
instance_type: str = field(default="ml.p4d.24xlarge", metadata={"help": "Instance type used for the task"})
volume_size: int = field(default=256, metadata={"help": "The size of the EBS volume in GB"})
instance_count: int = field(default=1, metadata={"help": "The number of instances used for task"})
max_run: Union[int, None] = field(
default=None,
metadata={"help": "Maximum runtime in seconds"},
)
max_wait: Union[int, None] = field(
default=None,
metadata={"help": "Maximum wait time in seconds"},
)
use_spot_instances: bool = field(
default=False, metadata={"help": "Whether to use spot instances for cheaper training"}
)
input: Union[list[str], None] = field(
default=None,
metadata={"help": "A list of input data channels"},
)
default_channel: str = field(
default="data",
metadata={"help": "The default channel name to use if a channel is not specified in an input uri"},
)
def inputs(self) -> dict[str, TrainingInput]:
val = {}
for uri in self.input:
# split the url into url params and get the input_mode and channel params
parsed_url = urlparse(uri)
params = dict(kv.split("=") for kv in parsed_url.query.split("&"))
s3_data = parsed_url.geturl().split("?")[0]
channel = params.get("channel", self.default_channel)
input_mode = params.get("input_mode", "File")
val[channel] = TrainingInput(
s3_data=s3_data,
input_mode=input_mode,
)
return val
@dataclass
class DistributedArguments(Arguments):
enable_distributed: bool = field(default=False, metadata={"help": "Whether to use distributed training"})
num_machines: int = field(default=1, metadata={"help": "Number of machines"})
num_processes: int = field(default=1, metadata={"help": "Number of processes"})
@dataclass
class DeepSpeedArguments(Arguments):
enable_deepspeed: bool = field(default=False, metadata={"help": "Whether to use DeepSpeed"})
zero_stage: int = field(default=2, metadata={"help": "DeepSpeed ZeRO stage"})
offload: bool = field(default=False, metadata={"help": "Whether to offload to CPU"})
pin_memory: bool = field(
default=True,
metadata={
"help": "Offload to page-locked CPU memory. This could boost throughput at the cost of extra memory overhead."
},
)
@dataclass
class LoraArguments(Arguments):
enable_lora: bool = field(default=False, metadata={"help": "Whether to use LoRA"})
lora_r: int = field(default=8, metadata={"help": "Lora attention dimension"})
lora_alpha: int = field(default=8, metadata={"help": "Lora alpha"})
lora_dropout: float = field(default=0.0, metadata={"help": "Lora dropout"})
lora_bias: str = field(default="none", metadata={"help": "Bias type for Lora. Can be 'none', 'all' or 'lora_only'"})
target_modules: list[str] = field(
default_factory=lambda: [],
metadata={"help": "Target modules for Lora. If empty, all modules will be targeted."},
)
modules_to_save: list[str] = field(
default_factory=lambda: [],
metadata={
"help": "List of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint. These typically include model’s custom head that is randomly initialized for the fine-tuning task."
},
)
lora_task_type: str = field(
default="CAUSAL_LM",
metadata={
"help": "Task type for Lora. Can be 'SEQ_CLS', 'SEQ_2_SEQ_LM', 'CAUSAL_LM', 'TOKEN_CLS', 'QUESTION_ANS', 'FEATURE_EXTRACTION'"
},
)
def config(self, model, **kwargs) -> LoraConfig:
return LoraConfig(
lora_alpha=self.lora_alpha,
lora_dropout=self.lora_dropout,
target_modules=self.target_modules or find_all_linear_names(model),
r=self.lora_r,
bias=self.lora_bias,
modules_to_save=self.modules_to_save,
task_type=self.lora_task_type,
**kwargs,
)
@dataclass
class BitsAndBytesArguments(Arguments):
load_in_8bit: bool = field(default=False, metadata={"help": "Whether to load in 8-bit"})
load_in_4bit: bool = field(default=False, metadata={"help": "Whether to load in 4-bit"})
llm_int8_threshold: float = field(
default=6.0,
metadata={
"help": "Any hidden states value that is above this threshold will be considered an outlier and the operation on those values will be done in fp16."
},
)
llm_int8_skip_modules: Union[list[str], None] = field(
default=None,
metadata={"help": "An explicit list of the modules that we do not want to convert in 8-bit."},
)
llm_int8_enable_fp32_cpu_offload: bool = field(
default=False,
metadata={
"help": "If you want to split your model in different parts and run some parts in int8 on GPU and some parts in fp32 on CPU, you can use this flag. Note that the int8 operations will not be run on CPU."
},
)
llm_int8_has_fp16_weight: bool = field(
default=False,
metadata={
"help": "This is useful for fine-tuning as the weights do not have to be converted back and forth for the backward pass."
},
)
bnb_4bit_compute_dtype: Union[str, None] = field(
default=None,
metadata={
"help": "This sets the computational type which might be different than the input type. For example, inputs might be fp32, but computation can be set to bf16 for speedups."
},
)
bnb_4bit_quant_type: str = field(
default="fp4",
metadata={
"help": "This sets the quantization data type in the bnb.nn.Linear4Bit layers. Options are FP4 and NF4 data types which are specified by `fp4` or `nf4`."
},
)
bnb_4bit_use_double_quant: bool = field(
default=False,
metadata={
"help": "This flag is used for nested quantization where the quantization constants from the first quantization are quantized again."
},
)
def config(self, **kwargs) -> BitsAndBytesConfig:
return BitsAndBytesConfig(**self.__dict__, **kwargs)
def __post_init__(self):
# Check GPU compatibility with bfloat16
if self.load_in_4bit and self.bnb_4bit_compute_dtype == torch.float16:
major, _ = torch.cuda.get_device_capability()
if major >= 8:
# yellow
print("\033[93m", end="")
print("Your GPU supports bfloat16: accelerate training with `bnb_4bit_compute_dtype=bfloat16`")
print("\033[0m", end="")
@dataclass
class SFTArguments(Arguments):
max_seq_length: int = field(
default=2048,
metadata={"help": "Maximum sequence length to use for training"},
)
packing: bool = field(
default=False,
metadata={"help": "Whether to pack the sequence length to the batch dimension"},
)
@dataclass
class MachineLearningArguments:
task: TaskArguments
hf: HuggingFaceHubArguments
instance: InstanceArguments
dist: DistributedArguments
trainer: TrainingArguments
sft: SFTArguments
ds: DeepSpeedArguments
lora: LoraArguments
bnb: BitsAndBytesArguments
nargs: list
def __iter__(self):
return iter(
[
self.task,
self.hf,
self.instance,
self.dist,
self.trainer,
self.sft,
self.ds,
self.lora,
self.bnb,
self.nargs,
]
)
def lora_config(self, model) -> LoraConfig:
return self.lora.config(model)
def bnb_config(self) -> BitsAndBytesConfig:
return self.bnb.config()
def tokenizer(self, **kwargs) -> AutoTokenizer:
return self.hf.tokenizer(**kwargs)
def model(self, **kwargs) -> AutoModelForCausalLM:
device_map = None
if self.lora.enable_lora and not self.ds.enable_deepspeed:
device_map = {"": get_local_rank()}
print(f"Device map: {device_map}", all_ranks="true")
return self.hf.model(
quantization_config=self.bnb.config() if self.bnb.load_in_4bit or self.bnb.load_in_8bit else None,
device_map=device_map,
**kwargs,
)
def sft_trainer(self, model, tokenizer, train_dataset, **kwargs) -> SFTTrainer:
if self.lora.enable_lora and self.dist.enable_distributed:
print("\033[93m", end="")
print(
"Automatically setting `ddp_find_unused_parameters=False` when using LoRA with DistributedDataParallel."
)
print("\033[0m", end="")
self.trainer.ddp_find_unused_parameters = False
return SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=train_dataset,
peft_config=self.lora.config(model) if self.lora.enable_lora else None,
max_seq_length=self.sft.max_seq_length,
args=self.trainer,
packing=self.sft.packing,
**kwargs,
)
def __post_init__(self):
# Check GPU compatibility with bfloat16
if self.trainer and self.trainer.fp16:
major, _ = torch.cuda.get_device_capability()
if major >= 8:
print("\033[93m", end="")
print("Your GPU supports bfloat16: accelerate training with `bf16=True`")
print("\033[0m", end="")
def object_to_args(obj):
args = []
for k, v in obj.items():
if v is None:
continue
# if it is a list add each arg sepatly
if isinstance(v, list):
args += [f"--{k}"]
for val in v:
args += [f"{val}"]
elif isinstance(v, bool):
if v:
args += [f"--{k}", "True"]
else:
args += [f"--{k}", f"{v}"]
return args
arg_classes = [
TaskArguments,
HuggingFaceHubArguments,
InstanceArguments,
DistributedArguments,
TrainingArguments,
SFTArguments,
DeepSpeedArguments,
LoraArguments,
BitsAndBytesArguments,
]
arg_keywords = {
"task": TaskArguments,
"hf": HuggingFaceHubArguments,
"instance": InstanceArguments,
"dist": DistributedArguments,
"trainer": TrainingArguments,
"sft": SFTArguments,
"ds": DeepSpeedArguments,
"lora": LoraArguments,
"bnb": BitsAndBytesArguments,
"nargs": list,
}
def parse_args(*classes) -> MachineLearningArguments:
full_config = yaml.load(open("ml.yaml", "r"), Loader=yaml.FullLoader)
current_config = {
# all defaults and any param that isn't an object
k: v
for k, v in full_config.items()
if not isinstance(v, dict)
}
if "defaults" in full_config:
# add defaults to config
current_config.update(full_config["defaults"])
if "config" in full_config:
config_keys = full_config["config"]
if isinstance(config_keys, list):
# if `config` is set, add its settings to run config
for key in config_keys:
if key in full_config:
current_config.update(full_config[key])
elif isinstance(config_keys, str):
key = config_keys
if key in full_config:
current_config.update(full_config[key])
else:
raise ValueError(f"Invalid config key type: {type(config_keys)}: Must be str or list[str]")
config_args = object_to_args(current_config)
parser = HfArgumentParser(classes)
arg_class_objs = parser.parse_args_into_dataclasses(
args=[*config_args, *sys.argv[1:]], return_remaining_strings=True
)
kwargs = {}
for k in arg_keywords.keys():
kwargs[k] = None
for arg_class_obj in arg_class_objs:
for k, v in arg_keywords.items():
if isinstance(arg_class_obj, v):
kwargs[k] = arg_class_obj
return MachineLearningArguments(**kwargs)
def print_args(args: MachineLearningArguments, unknown=False):
for arg_class in args:
if not arg_class:
continue
if not isinstance(arg_class, list):
print(arg_class.__class__.__name__, arg_class.__dict__)
if isinstance(arg_class, list) and unknown:
print("UnknownArguments", arg_class)