-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmorphmat_funs.R
527 lines (416 loc) · 15.4 KB
/
morphmat_funs.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
mytheme <- theme_classic() + # define custom theme for ggplots
theme(
axis.title.y = element_text(margin = margin(t = 0, r = 10, b = 0, l = 0)),
axis.title.x = element_text(margin = margin(t = 10, r = 0, b = 0, l = 0)),
text = element_text(size = 13))
mytheme_light <- theme_light() + # define custom theme for ggplots
theme(
axis.title.y = element_text(margin = margin(t = 0, r = 10, b = 0, l = 0)),
axis.title.x = element_text(margin = margin(t = 10, r = 0, b = 0, l = 0)),
text = element_text(size = 13))
# Fake_crustaceans --------------------------------------------------------
fake_crustaceans <- function(L50 = 100, # length at 50% maturity on ref var scale
slope = 5, # slope parameter for logistic maturity
n = 1000, # number of crustaceans sampled
# mean of reference variable, e.g., carapace width in mm
x_mean = 105,
# standard deviation of reference variable
x_sd = 20,
allo_params = c(1.2, # immature slope parameter
0.1, # immature intercept parameter
1.2, # mature slope parameter
0.1),# mature intercept parameter
error_scale = 20) # SD of errors
{
# Create normal distribution of carapace widths for a given n, mean, and SD
fake_crustaceans <- data.frame(x = stats::rnorm(n = n, mean = x_mean, sd = x_sd))
# Add probability of maturity for each individual crab
# based on a logistic distribution with given location (L50) and
# shape (slope of the logistic curve) parameters
fake_crustaceans$prob_mat <- stats::plogis(fake_crustaceans$x, L50, slope)
# Based on the probabilities of maturity,
# use a binomial distribution to assign each crab a maturity status
# (0 = immature, 1 = mature)
mature_vec <- stats::rbinom(n, 1, fake_crustaceans$prob_mat)
# Add vector of maturities to data frame of x-vars and maturity probabilities
fake_crustaceans$mature <- as.factor(mature_vec)
err_sd <- fake_crustaceans %>%
dplyr::summarise(
range = max(.data$x, na.rm = TRUE) - min(.data$x, na.rm = TRUE)
) %>%
dplyr::mutate(err_sd = .data$range * 0.01 / error_scale) %>%
dplyr::pull(err_sd)
err <- stats::rnorm(n = n, sd = err_sd)
fake_crustaceans$errs <- exp(err)
a0 <- allo_params[1] # Immature slope parameter
b0 <- allo_params[2] # Immature intercept parameter
a1 <- allo_params[3] # Mature slope parameter
b1 <- allo_params[4] # Immature intercept parameter
fake_crustaceans <- fake_crustaceans %>%
#if crab is immature, use immature parameters
dplyr::mutate(y = dplyr::case_when(
.data$mature == 0 ~ b0 * (.data$x ^ (a0)) * .data$errs,
#if crab is mature, use mature parameters
.data$mature == 1 ~ b1 * (.data$x ^ (a1)) * .data$errs),
log_x = log(.data$x), #find log of x
log_y = log(.data$y) #find log of x
)
fake_crustaceans <- fake_crustaceans %>% dplyr::select(-"errs")
return(fake_crustaceans)
}
# Broken-stick Stevens ----------------------------------------------------
broken_stick_stevens <- function(dat,
xvar,
yvar,
lower = NULL,
upper = NULL,
verbose = FALSE) {
stevens <- dat %>% dplyr::arrange(.data[[xvar]])
xraw <- stevens[[xvar]]
yraw <- stevens[[yvar]]
if (is.null(lower)) {
lower <- stats::quantile(xraw, 0.2)
}
if (is.null(upper)) {
upper <- stats::quantile(xraw, 0.8)
}
left_x <- (xraw <= lower) # T/F vector
low_ndx <- sum(left_x) # largest group 1 point
right_x <- (xraw >= upper) # T/F vector
high_ndx <- (length(xraw) - sum(right_x)) + 1 # smallest group 2 point
min_x <- xraw[low_ndx] # lowest T value
min_y <- yraw[low_ndx] # lowest T value
stevens$xvar <- xraw
stevens$yvar <- yraw
lm0 <- stats::lm(yvar ~ xvar, data = stevens)
rss0 <- stats::anova(lm0)[[2, 2]] # residual sum of squares
ms0 <- stats::anova(lm0)[[3]] # mean squared error
F0 <- ms0[1] / ms0[2] # F value
n0 <- dim(stevens)[1]
rss_min <- rss0
mse0 <- mean(lm0$residuals ^ 2)
# assign group membership
# 1 = left line, 2= right line
memb <- rep(1, nrow(stevens))
memb_low <- (xraw <= min_x) # T/F list if less than low range
memb_high <- (yraw > min_y) # T/F list if GT than high range
memb[memb_low] <- 1 # assign 1 to those < low
memb[memb_high] <- 2 # assign 2 to those > high
memb_sum1 <- summary(as.factor(memb))
stevens$prior <- memb
stevens$group <- memb
run <- 0
while (min_x < upper) {
run <- run + 1
# Left regression
lm1 <- stats::lm(
I(yvar[memb == 1] - min_y) ~ 0 + I(xvar[memb == 1] - min_x),
data = stevens
)
b1 <- stats::coef(lm1)[[1]]
a1 <- min_y - (b1 * min_x)
df1 <- stats::anova(lm1)[[1]]
rss1 <- stats::anova(lm1)[[2, 2]]
ms1 <- stats::anova(lm1)[[3]]
# Right regression
lm2 <- stats::lm(
I(yvar[memb == 2] - min_y) ~ 0 + I(xvar[memb == 2] - min_x),
data = stevens
)
b2 <- stats::coef(lm2)[[1]]
a2 <- min_y - (b2 * min_x)
df2 <- stats::anova(lm2)[[1]]
rss2 <- stats::anova(lm2)[[2, 2]]
ms2 <- stats::anova(lm2)[[3]]
# calculate combined RSS and F
rss_pool <- rss1 + rss2 # add residual sum of squares
ms_diff <- (rss0 - rss_pool) / 2
ms_pool <- rss_pool / (n0 - 4)
F2 <- ms_diff / ms_pool
F2_p <- 1 - stats::pf(F2,
df1 = 2,
df = n0 - 4,
lower.tail = F)
if (run == 1 |
(rss_pool < rss_min)) {
# Run 1 OR pooled RSS
rss_min <- rss_pool
joint_x <- min_x
joint_y <- min_y
a1_1 <- a1 # reset old values
a2_1 <- a2
b1_1 <- b1
b2_1 <- b2
}
# next point
low_ndx <- low_ndx + 1
min_x <- stevens$xvar[low_ndx]
min_y <- stevens$yvar[low_ndx]
memb_low <- stevens$xvar <= min_x # T/F list if less than low range
memb_high <- stevens$xvar > min_x # T/F list if GT than high range
memb[memb_low] <- 1 # assign 1 to those < low
memb[memb_high] <- 2 # assign 2 to those > high
} # end loop
SM50 <- joint_x
memb_low <- stevens$xvar <= joint_x # T/F list if less than low range
memb_high <- stevens$xvar > joint_x # T/F list if GT than high range
memb[memb_low] <- 1 # assign 1 to those < low
memb[memb_high] <- 2 # assign 2 to those > high
stevens$group <- memb
memb_sum2 <- summary(as.factor(stevens$group))
n_tot <- sum(memb_sum2)
output <- list(
data = stevens %>% dplyr::select(-c("xvar", "yvar", "prior")),
SM50 = SM50,
imm_slope = b1_1,
imm_int = a1_1,
mat_slope = b2_1,
mat_int = a2_1,
F_val = F2,
p_val = F2_p
)
if (verbose == TRUE) {
return(output)
}
else
return(SM50)
}
# Two-line Stevens --------------------------------------------------------
two_line_stevens <- function(dat,
xvar,
yvar,
lower = NULL,
upper = NULL,
verbose = FALSE,
bps = "even",
num_bps = 100) {
stevens <- dat %>% dplyr::arrange(.data[[xvar]])
xraw <- stevens[[xvar]]
yraw <- stevens[[yvar]]
if (is.null(lower)) {
lower <- stats::quantile(xraw, 0.2)
}
if (is.null(upper)) {
upper <- stats::quantile(xraw, 0.8)
}
left_x <- (xraw <= lower) # T/F vector
low_ndx <- sum(left_x) # largest group 1 point
right_x <- (xraw >= upper) # T/F vector
high_ndx <- (length(xraw) - sum(right_x)) + 1 # smallest group 2 point
min_x <- xraw[low_ndx] # lowest T value
min_y <- yraw[low_ndx] # lowest T value
stevens$xvar <- xraw
stevens$yvar <- yraw
lm0 <- stats::lm(yvar ~ xvar, data = stevens)
rss0 <- stats::anova(lm0)[[2, 2]] # residual sum of squares
ms0 <- stats::anova(lm0)[[3]] # mean squared error
F0 <- ms0[1] / ms0[2] # F value
n0 <- dim(stevens)[1]
rss_min <- rss0
mse0 <- mean(lm0$residuals ^ 2)
# assign group membership
# 1 = left line, 2= right line
memb <- rep(1, nrow(stevens))
memb_low <- (xraw <= min_x) # T/F list if less than low range
memb_high <- (yraw > min_y) # T/F list if GT than high range
memb[memb_low] <- 1 # assign 1 to those < low
memb[memb_high] <- 2 # assign 2 to those > high
memb_sum1 <- summary(as.factor(memb))
stevens$group <- memb
#### Loop
if (bps == "obs") {
mse <- rep(0, n0)
for (i in 1:n0) {
piecewise1 <- stats::lm(
yvar ~ xvar * (xvar < xvar[i]) + xvar * (xvar >= xvar[i]),
data = stevens)
mse[i] <- mean(piecewise1$residuals ^ 2)
}
### find breakpoint (bp) that gives lowest MSE
bp_ind <- which(mse == min(mse))
bp <- stevens$xvar[bp_ind] # this is not necessarily where the lines cross
}
if (bps == "even") {
## determine increment for loop
steps <- seq(lower, upper, l = num_bps)
#### Loop
mse <- rep(0, num_bps)
for (i in 1:num_bps) {
piecewise1 <- stats::lm(yvar ~ xvar * (xvar < steps[i]) +
xvar * (xvar >= steps[i]), data = stevens)
mse[i] <- mean(piecewise1$residuals ^ 2)
}
### find breakpoint (bp) that gives lowest MSE
bp_ind <- which(mse == min(mse))
bp <- steps[bp_ind] # this is not necessarily where the lines cross
}
if (length(bp) > 1) {
bp <- stats::median(bp)
}
## rerun piecewise regression at best bp
piecewise2 <- stats::lm(yvar ~ xvar * (xvar < bp) + xvar * (xvar > bp),
data = stevens)
pw_vals <- stats::coef(piecewise2)
pw_vals[which(is.na(pw_vals))] <- 0
a_lo <- pw_vals[1] + pw_vals[3]
b_lo <- pw_vals[2] + pw_vals[5]
a_hi <- pw_vals[1] + pw_vals[4]
b_hi <- pw_vals[2]
jx <- as.numeric((a_lo - a_hi) / (b_hi - b_lo)) #the point where 2 lines meet
#### Reassign group membership
memb_pw <- rep(1, n0)
memb_pw[stevens$xvar >= bp] <- 2
stevens$group <- memb_pw
output <- list(
data = stevens,
breakpoint = bp,
intersection = jx,
imm_slope = b_lo,
imm_int = a_lo,
mat_slope = b_hi,
mat_int = a_hi
)
if (verbose == TRUE) {
return(output)
}
else
return(c(breakpoint = bp, intersection = jx))
}
# REGRANS -----------------------------------------------------------------
regrans <- function(dat,
xvar,
yvar,
lower = NULL,
upper = NULL,
verbose = FALSE,
n_tries = 100) {
x <- dat[[xvar]]
y <- dat[[yvar]]
if (is.null(lower)) {
lower <- stats::quantile(x, 0.2)
}
if (is.null(upper)) {
upper <- stats::quantile(x, 0.8)
}
changept_choices <- seq(lower, upper, length.out = n_tries)
help_fun <- function(i)
{
x2star <- (x - i) * as.numeric(x > i)
fit <- stats::lm(y ~ x + x2star)
sum_sq <- stats::anova(fit)["Residuals", "Sum Sq"]
return(sum_sq)
}
breakpt <- sapply(changept_choices, help_fun)
breakpt <- data.frame(changept = changept_choices, sum_sq = breakpt)
if (verbose == TRUE) {
return(breakpt)
}
else {
out <- breakpt[which.min(breakpt$sum_sq), "changept"]
return(out)
}
}
# Somerton method ---------------------------------------------------------
somerton_fun <- function(
dat, # data.frame with columns corresponding to xvar, yvar
xvar, # X variable
yvar, # Y variable
trans = "none", # transformation to apply
lower = NULL, # lower bound of unknown range
upper = NULL, # upper bound of unknown range
max_iter = 50 # maximum number of iterations
) {
if (is.null(lower)) {
lower <- stats::quantile(dat[[xvar]], 0.2)
}
if (is.null(upper)) {
upper <- stats::quantile(dat[[xvar]], 0.8)
}
if (trans == "log") {
dat$xvar <- log(dat[[xvar]])
dat$yvar <- log(dat[[yvar]])
}
else if (trans == "std") {
dat$xvar <- scale(dat[[xvar]])
dat$xvar <- scale(dat[[yvar]])
}
else {
dat$xvar <- dat[[xvar]]
dat$yvar <- dat[[yvar]]
}
df <- dat %>%
mutate(group = case_when(
xvar < lower ~ "juv",
xvar > upper ~ "adult",
.default = NA))
df$temp_group <- df$group
rsq_vec <- rep(NA, max_iter)
RSS_vec <- rep(NA, max_iter)
for (i in 1:max_iter) {
# fit known juveniles
juv_df <- df[df$temp_group=="juv",]
juv_fit <- lm(yvar ~ xvar, juv_df) # fit linear model
rss_juv <- anova(juv_fit)[[2]][2] # juvenile model residual sum of squares
# fit known adults
ad_df <- df[df$temp_group=="adult",]
ad_fit <- lm(yvar ~ xvar, ad_df) # fit linear model
rss_ad <- anova(ad_fit)[[2]][2] # adult model residual sum of squares
RSS <- rss_juv + rss_ad # add residual sum of squares
TSS <- sum((df$yvar - mean(df$yvar))^2) # total sum of squares
rsq <- 1-(RSS/TSS)
df <- df %>%
mutate(
pred_juv = predict(juv_fit, newdata = data.frame(xvar)), # predict yvar based on juvenile model
pred_ad = predict(ad_fit, newdata = data.frame(xvar)), # predict yvar based on adult model
resid_juv = abs(yvar - pred_juv), # juvenile residuals
resid_ad = abs(yvar - pred_ad), # adult residuals
# temp_group = if_else(resid_juv < resid_ad, "juv", "adult"))
# Option 1: all points can be reclassified to either maturity stage
temp_group = case_when(
is.na(group) & resid_juv < resid_ad ~ "juv",
is.na(group) & resid_juv >= resid_ad ~ "adult",
.default = group
))
rsq_vec[i] = rsq
RSS_vec[i] = RSS
}
df <- df %>% rename(init_group = group, pred_mat = temp_group) %>%
mutate(pred_mat_num = if_else(pred_mat == "adult", 1, 0))
output <- list(data = df, rsq = rsq_vec, RSS = RSS_vec, juv_mod = juv_fit, adult_mod = ad_fit)
return(output)
}
# infl_pt -----------------------------------------------------------------
infl_pt <- function(dat, x, y, log = FALSE, plot = FALSE) {
# find the ratio between the two morphometric variables
if (isTRUE(log)) {
ratio <- log(dat[[y]])/log(dat[[x]])
}
else {
ratio <- dat[[y]]/dat[[x]]
}
# compute a kernel density estimate (essentially a smoothed histogram)
density_test <- stats::density(ratio)
# convert into a data frame
density_test <- data.frame(x = density_test$x, y = density_test$y)
# find the local minimum between the two peaks
density_test$is_min <- splus2R::peaks(
x = -density_test$y, span = 3, strict = FALSE)
min <- density_test %>%
dplyr::filter(.data$is_min == TRUE) %>%
dplyr::pull(x)
min <- stats::median(min)
# optionally visualize the density plot with minimum
if (plot == TRUE) {
print(ggplot2::ggplot() +
ggplot2::geom_line(aes(x = density_test$x, y = density_test$y)) +
ggplot2::geom_vline(xintercept = min, lty = "dashed") +
labs(x = "Ratio", y = NULL) +
ggplot2::theme_light())
}
# return the minimum ratio, equivalent to the slope of a line
# separating the two clouds of points
if (is.na(min)) {
warning("No local minimum detected.")
}
return(min)
}