forked from Gaoyiminggithub/Graphonomy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_transforms.py
491 lines (397 loc) · 14.9 KB
/
custom_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import torch
import math
import numbers
import random
import numpy as np
from PIL import Image, ImageOps
from torchvision import transforms
class RandomCrop(object):
def __init__(self, size, padding=0):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size # h, w
self.padding = padding
def __call__(self, sample):
img, mask = sample['image'], sample['label']
if self.padding > 0:
img = ImageOps.expand(img, border=self.padding, fill=0)
mask = ImageOps.expand(mask, border=self.padding, fill=0)
assert img.size == mask.size
w, h = img.size
th, tw = self.size # target size
if w == tw and h == th:
return {'image': img,
'label': mask}
if w < tw or h < th:
img = img.resize((tw, th), Image.BILINEAR)
mask = mask.resize((tw, th), Image.NEAREST)
return {'image': img,
'label': mask}
x1 = random.randint(0, w - tw)
y1 = random.randint(0, h - th)
img = img.crop((x1, y1, x1 + tw, y1 + th))
mask = mask.crop((x1, y1, x1 + tw, y1 + th))
return {'image': img,
'label': mask}
class RandomCrop_new(object):
def __init__(self, size, padding=0):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size # h, w
self.padding = padding
def __call__(self, sample):
img, mask = sample['image'], sample['label']
if self.padding > 0:
img = ImageOps.expand(img, border=self.padding, fill=0)
mask = ImageOps.expand(mask, border=self.padding, fill=0)
assert img.size == mask.size
w, h = img.size
th, tw = self.size # target size
if w == tw and h == th:
return {'image': img,
'label': mask}
new_img = Image.new('RGB',(tw,th),'black') # size is w x h; and 'white' is 255
new_mask = Image.new('L',(tw,th),'white') # same above
# if w > tw or h > th
x1 = y1 = 0
if w > tw:
x1 = random.randint(0,w - tw)
if h > th:
y1 = random.randint(0,h - th)
# crop
img = img.crop((x1,y1, x1 + tw, y1 + th))
mask = mask.crop((x1,y1, x1 + tw, y1 + th))
new_img.paste(img,(0,0))
new_mask.paste(mask,(0,0))
# x1 = random.randint(0, w - tw)
# y1 = random.randint(0, h - th)
# img = img.crop((x1, y1, x1 + tw, y1 + th))
# mask = mask.crop((x1, y1, x1 + tw, y1 + th))
return {'image': new_img,
'label': new_mask}
class Paste(object):
def __init__(self, size,):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size # h, w
def __call__(self, sample):
img, mask = sample['image'], sample['label']
assert img.size == mask.size
w, h = img.size
th, tw = self.size # target size
assert (w <=tw) and (h <= th)
if w == tw and h == th:
return {'image': img,
'label': mask}
new_img = Image.new('RGB',(tw,th),'black') # size is w x h; and 'white' is 255
new_mask = Image.new('L',(tw,th),'white') # same above
new_img.paste(img,(0,0))
new_mask.paste(mask,(0,0))
return {'image': new_img,
'label': new_mask}
class CenterCrop(object):
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, sample):
img = sample['image']
mask = sample['label']
assert img.size == mask.size
w, h = img.size
th, tw = self.size
x1 = int(round((w - tw) / 2.))
y1 = int(round((h - th) / 2.))
img = img.crop((x1, y1, x1 + tw, y1 + th))
mask = mask.crop((x1, y1, x1 + tw, y1 + th))
return {'image': img,
'label': mask}
class RandomHorizontalFlip(object):
def __call__(self, sample):
img = sample['image']
mask = sample['label']
if random.random() < 0.5:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
mask = mask.transpose(Image.FLIP_LEFT_RIGHT)
return {'image': img,
'label': mask}
class HorizontalFlip(object):
def __call__(self, sample):
img = sample['image']
mask = sample['label']
img = img.transpose(Image.FLIP_LEFT_RIGHT)
mask = mask.transpose(Image.FLIP_LEFT_RIGHT)
return {'image': img,
'label': mask}
class HorizontalFlip_only_img(object):
def __call__(self, sample):
img = sample['image']
mask = sample['label']
img = img.transpose(Image.FLIP_LEFT_RIGHT)
# mask = mask.transpose(Image.FLIP_LEFT_RIGHT)
return {'image': img,
'label': mask}
class RandomHorizontalFlip_cihp(object):
def __call__(self, sample):
img = sample['image']
mask = sample['label']
if random.random() < 0.5:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
# mask = Image.open()
return {'image': img,
'label': mask}
class Normalize(object):
"""Normalize a tensor image with mean and standard deviation.
Args:
mean (tuple): means for each channel.
std (tuple): standard deviations for each channel.
"""
def __init__(self, mean=(0., 0., 0.), std=(1., 1., 1.)):
self.mean = mean
self.std = std
def __call__(self, sample):
img = np.array(sample['image']).astype(np.float32)
mask = np.array(sample['label']).astype(np.float32)
img /= 255.0
img -= self.mean
img /= self.std
return {'image': img,
'label': mask}
class Normalize_255(object):
"""Normalize a tensor image with mean and standard deviation. tf use 255.
Args:
mean (tuple): means for each channel.
std (tuple): standard deviations for each channel.
"""
def __init__(self, mean=(123.15, 115.90, 103.06), std=(1., 1., 1.)):
self.mean = mean
self.std = std
def __call__(self, sample):
img = np.array(sample['image']).astype(np.float32)
mask = np.array(sample['label']).astype(np.float32)
# img = 255.0
img -= self.mean
img /= self.std
img = img
img = img[[0,3,2,1],...]
return {'image': img,
'label': mask}
class Normalize_xception_tf(object):
# def __init__(self):
# self.rgb2bgr =
def __call__(self, sample):
img = np.array(sample['image']).astype(np.float32)
mask = np.array(sample['label']).astype(np.float32)
img = (img*2.0)/255.0 - 1
# print(img.shape)
# img = img[[0,3,2,1],...]
return {'image': img,
'label': mask}
class Normalize_xception_tf_only_img(object):
# def __init__(self):
# self.rgb2bgr =
def __call__(self, sample):
img = np.array(sample['image']).astype(np.float32)
# mask = np.array(sample['label']).astype(np.float32)
img = (img*2.0)/255.0 - 1
# print(img.shape)
# img = img[[0,3,2,1],...]
return {'image': img,
'label': sample['label']}
class Normalize_cityscapes(object):
"""Normalize a tensor image with mean and standard deviation.
Args:
mean (tuple): means for each channel.
std (tuple): standard deviations for each channel.
"""
def __init__(self, mean=(0., 0., 0.)):
self.mean = mean
def __call__(self, sample):
img = np.array(sample['image']).astype(np.float32)
mask = np.array(sample['label']).astype(np.float32)
img -= self.mean
img /= 255.0
return {'image': img,
'label': mask}
class ToTensor_(object):
"""Convert ndarrays in sample to Tensors."""
def __init__(self):
self.rgb2bgr = transforms.Lambda(lambda x:x[[2,1,0],...])
def __call__(self, sample):
# swap color axis because
# numpy image: H x W x C
# torch image: C X H X W
img = np.array(sample['image']).astype(np.float32).transpose((2, 0, 1))
mask = np.expand_dims(np.array(sample['label']).astype(np.float32), -1).transpose((2, 0, 1))
# mask[mask == 255] = 0
img = torch.from_numpy(img).float()
img = self.rgb2bgr(img)
mask = torch.from_numpy(mask).float()
return {'image': img,
'label': mask}
class ToTensor_only_img(object):
"""Convert ndarrays in sample to Tensors."""
def __init__(self):
self.rgb2bgr = transforms.Lambda(lambda x:x[[2,1,0],...])
def __call__(self, sample):
# swap color axis because
# numpy image: H x W x C
# torch image: C X H X W
img = np.array(sample['image']).astype(np.float32).transpose((2, 0, 1))
# mask = np.expand_dims(np.array(sample['label']).astype(np.float32), -1).transpose((2, 0, 1))
# mask[mask == 255] = 0
img = torch.from_numpy(img).float()
img = self.rgb2bgr(img)
# mask = torch.from_numpy(mask).float()
return {'image': img,
'label': sample['label']}
class FixedResize(object):
def __init__(self, size):
self.size = tuple(reversed(size)) # size: (h, w)
def __call__(self, sample):
img = sample['image']
mask = sample['label']
assert img.size == mask.size
img = img.resize(self.size, Image.BILINEAR)
mask = mask.resize(self.size, Image.NEAREST)
return {'image': img,
'label': mask}
class Keep_origin_size_Resize(object):
def __init__(self, max_size, scale=1.0):
self.size = tuple(reversed(max_size)) # size: (h, w)
self.scale = scale
self.paste = Paste(int(max_size[0]*scale))
def __call__(self, sample):
img = sample['image']
mask = sample['label']
assert img.size == mask.size
h, w = self.size
h = int(h*self.scale)
w = int(w*self.scale)
img = img.resize((h, w), Image.BILINEAR)
mask = mask.resize((h, w), Image.NEAREST)
return self.paste({'image': img,
'label': mask})
class Scale(object):
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, sample):
img = sample['image']
mask = sample['label']
assert img.size == mask.size
w, h = img.size
if (w >= h and w == self.size[1]) or (h >= w and h == self.size[0]):
return {'image': img,
'label': mask}
oh, ow = self.size
img = img.resize((ow, oh), Image.BILINEAR)
mask = mask.resize((ow, oh), Image.NEAREST)
return {'image': img,
'label': mask}
class Scale_(object):
def __init__(self, scale):
self.scale = scale
def __call__(self, sample):
img = sample['image']
mask = sample['label']
assert img.size == mask.size
w, h = img.size
ow = int(w*self.scale)
oh = int(h*self.scale)
img = img.resize((ow, oh), Image.BILINEAR)
mask = mask.resize((ow, oh), Image.NEAREST)
return {'image': img,
'label': mask}
class Scale_only_img(object):
def __init__(self, scale):
self.scale = scale
def __call__(self, sample):
img = sample['image']
mask = sample['label']
# assert img.size == mask.size
w, h = img.size
ow = int(w*self.scale)
oh = int(h*self.scale)
img = img.resize((ow, oh), Image.BILINEAR)
# mask = mask.resize((ow, oh), Image.NEAREST)
return {'image': img,
'label': mask}
class RandomSizedCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, sample):
img = sample['image']
mask = sample['label']
assert img.size == mask.size
for attempt in range(10):
area = img.size[0] * img.size[1]
target_area = random.uniform(0.45, 1.0) * area
aspect_ratio = random.uniform(0.5, 2)
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if random.random() < 0.5:
w, h = h, w
if w <= img.size[0] and h <= img.size[1]:
x1 = random.randint(0, img.size[0] - w)
y1 = random.randint(0, img.size[1] - h)
img = img.crop((x1, y1, x1 + w, y1 + h))
mask = mask.crop((x1, y1, x1 + w, y1 + h))
assert (img.size == (w, h))
img = img.resize((self.size, self.size), Image.BILINEAR)
mask = mask.resize((self.size, self.size), Image.NEAREST)
return {'image': img,
'label': mask}
# Fallback
scale = Scale(self.size)
crop = CenterCrop(self.size)
sample = crop(scale(sample))
return sample
class RandomRotate(object):
def __init__(self, degree):
self.degree = degree
def __call__(self, sample):
img = sample['image']
mask = sample['label']
rotate_degree = random.random() * 2 * self.degree - self.degree
img = img.rotate(rotate_degree, Image.BILINEAR)
mask = mask.rotate(rotate_degree, Image.NEAREST)
return {'image': img,
'label': mask}
class RandomSized_new(object):
'''what we use is this class to aug'''
def __init__(self, size,scale1=0.5,scale2=2):
self.size = size
# self.scale = Scale(self.size)
self.crop = RandomCrop_new(self.size)
self.small_scale = scale1
self.big_scale = scale2
def __call__(self, sample):
img = sample['image']
mask = sample['label']
assert img.size == mask.size
w = int(random.uniform(self.small_scale, self.big_scale) * img.size[0])
h = int(random.uniform(self.small_scale, self.big_scale) * img.size[1])
img, mask = img.resize((w, h), Image.BILINEAR), mask.resize((w, h), Image.NEAREST)
sample = {'image': img, 'label': mask}
# finish resize
return self.crop(sample)
# class Random
class RandomScale(object):
def __init__(self, limit):
self.limit = limit
def __call__(self, sample):
img = sample['image']
mask = sample['label']
assert img.size == mask.size
scale = random.uniform(self.limit[0], self.limit[1])
w = int(scale * img.size[0])
h = int(scale * img.size[1])
img, mask = img.resize((w, h), Image.BILINEAR), mask.resize((w, h), Image.NEAREST)
return {'image': img, 'label': mask}