-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKMEANS_cuda.cu
675 lines (600 loc) · 20.6 KB
/
KMEANS_cuda.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
/*
* k-Means clustering algorithm
*
* CUDA version
*
* Parallel computing (Degree in Computer Engineering)
* 2022/2023
*
* Version: 1.0
*
* (c) 2022 Diego García-Álvarez, Arturo Gonzalez-Escribano
* Grupo Trasgo, Universidad de Valladolid (Spain)
*
* This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
* https://creativecommons.org/licenses/by-sa/4.0/
*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <math.h>
#include <time.h>
#include <string.h>
#include <float.h>
#include <cuda.h>
#include <omp.h>
#define MAXLINE 2000
#define MAXCAD 200
#define BLOCK_DIMX 64
//Macros
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
/*
* Macros to show errors when calling a CUDA library function,
* or after launching a kernel
*/
#define CHECK_CUDA_CALL( a ) { \
cudaError_t ok = a; \
if ( ok != cudaSuccess ) \
fprintf(stderr, "-- Error CUDA call in line %d: %s\n", __LINE__, cudaGetErrorString( ok ) ); \
}
#define CHECK_CUDA_LAST() { \
cudaError_t ok = cudaGetLastError(); \
if ( ok != cudaSuccess ) \
fprintf(stderr, "-- Error CUDA last in line %d: %s\n", __LINE__, cudaGetErrorString( ok ) ); \
}
/* Function declarations */
void showFileError(int error, char* filename);
int readInput(char* filename, int *lines, int *samples);
int readInput2(char* filename, float* data);
int writeResult(int *classMap, int lines, const char* filename);
void initCentroids(const float *data, float* centroids, int* centroidPos, int samples, int K);
/* Kernel declarations */
__device__ float euclideanDistanceGPU(float* point, float* center);
__global__ void firstStepGPU(float* point, float* center,
int* classMap, int* changes);
__global__ void recalculateCentroidsStep1GPU(float* point, int* classMap,
int* pointsPerClass, float* auxCentroids);
__global__ void recalculateCentroidsStep2GPU(float* auxCentroids, int* pointsPerClass, float* centroids, float* maxDist);
__global__ void recalculateCentroidsStep3GPU(float* maxDist, float* centroids, float* auxCentroids);
/* GPU constant memory variables */
__constant__ int samples_d;
__constant__ int K_d;
__constant__ int lines_d;
int main(int argc, char* argv[])
{
//START CLOCK***************************************
double start, end;
start = omp_get_wtime();
//**************************************************
/*
* PARAMETERS
*
* argv[1]: Input data file
* argv[2]: Number of clusters
* argv[3]: Maximum number of iterations of the method. Algorithm termination condition.
* argv[4]: Minimum percentage of class changes. Algorithm termination condition.
* If between one iteration and the next, the percentage of class changes is less than
* this percentage, the algorithm stops.
* argv[5]: Precision in the centroid distance after the update.
* It is an algorithm termination condition. If between one iteration of the algorithm
* and the next, the maximum distance between centroids is less than this precision, the
* algorithm stops.
* argv[6]: Output file. Class assigned to each point of the input file.
* */
if(argc != 7)
{
fprintf(stderr,"EXECUTION ERROR K-MEANS: Parameters are not correct.\n");
fprintf(stderr,"./KMEANS [Input Filename] [Number of clusters] [Number of iterations] [Number of changes] [Threshold] [Output data file]\n");
fflush(stderr);
exit(-1);
}
// Reading the input data
// lines = number of points; samples = number of dimensions per point
int lines = 0, samples= 0;
int error = readInput(argv[1], &lines, &samples);
if(error != 0)
{
showFileError(error,argv[1]);
exit(error);
}
float *data = (float*)calloc(lines*samples,sizeof(float));
if (data == NULL)
{
fprintf(stderr,"Memory allocation error.\n");
exit(-4);
}
error = readInput2(argv[1], data);
if(error != 0)
{
showFileError(error,argv[1]);
exit(error);
}
// Parameters
int K=atoi(argv[2]);
int maxIterations=atoi(argv[3]);
int minChanges= (int)(lines*atof(argv[4])/100.0);
float maxThreshold=atof(argv[5]);
int *centroidPos = (int*)calloc(K,sizeof(int));
float *centroids = (float*)calloc(K*samples,sizeof(float));
int *classMap = (int*)calloc(lines,sizeof(int));
if (centroidPos == NULL || centroids == NULL || classMap == NULL)
{
fprintf(stderr,"Memory allocation error.\n");
exit(-4);
}
// Initial centroids
srand(0);
int i;
for(i=0; i<K; i++)
centroidPos[i]=rand()%lines;
// Loading the array of initial centroids with the data from the array data
// The centroids are points stored in the data array.
initCentroids(data, centroids, centroidPos, samples, K);
char *outputMsg = (char *)calloc(10000,sizeof(char));
char line[1024];
int j;
int _class;
float dist, minDist;
int it=0;
int changes = 0;
float maxDist;
//pointPerClass: number of points classified in each class
//auxCentroids: mean of the points in each class
int *pointsPerClass = (int *)malloc(K*sizeof(int));
float *auxCentroids = (float*)malloc(K*samples*sizeof(float));
float *distCentroids = (float*)malloc(K*sizeof(float));
if (pointsPerClass == NULL || auxCentroids == NULL || distCentroids == NULL)
{
fprintf(stderr,"Memory allocation error.\n");
exit(-4);
}
printf("\n\tData file: %s \n\tPoints: %d\n\tDimensions: %d\n", argv[1], lines, samples);
printf("\tNumber of clusters: %d\n", K);
printf("\tMaximum number of iterations: %d\n", maxIterations);
printf("\tMinimum number of changes: %d [%g%% of %d points]\n", minChanges, atof(argv[4]), lines);
printf("\tMaximum centroid precision: %f\n", maxThreshold);
/*
*
* START CUDA MEMORY ALLOCATION
*
*/
CHECK_CUDA_CALL( cudaSetDevice(0) );
CHECK_CUDA_CALL( cudaDeviceSynchronize() );
int carveout = 100;
int size = lines*samples*sizeof(float);
int csize = K*samples*sizeof(float);
int cmapsize = lines*sizeof(int);
int ppcsize = K*sizeof(int);
float* points_d, *centroids_d, *auxCentroids_d, *maxDist_d;
int* changes_d, *classMap_d, *pointsPerClass_d;
/* Device memory allocation */
CHECK_CUDA_CALL( cudaMalloc((void**)&points_d, size) );
CHECK_CUDA_CALL( cudaMemcpy(points_d, data, size, cudaMemcpyHostToDevice) );
CHECK_CUDA_CALL( cudaMalloc((void**)¢roids_d, csize) );
CHECK_CUDA_CALL( cudaMemcpy(centroids_d, centroids, csize, cudaMemcpyHostToDevice) );
CHECK_CUDA_CALL( cudaMalloc((void**)&classMap_d, cmapsize) );
CHECK_CUDA_CALL( cudaMemset(classMap_d, 0, cmapsize) );
/* pointsPerClass_d, auxCentroids_d, changes_d, maxDist_d are initialized in the loop with cudaMemset */
CHECK_CUDA_CALL( cudaMalloc((void**)&pointsPerClass_d, ppcsize) );
CHECK_CUDA_CALL( cudaMalloc((void**)&auxCentroids_d, csize) );
CHECK_CUDA_CALL( cudaMalloc((void**)&changes_d, sizeof(int)) );
CHECK_CUDA_CALL( cudaMalloc((void**)&maxDist_d, sizeof(float)) );
/* Constant memory allocation */
CHECK_CUDA_CALL( cudaMemcpyToSymbol(samples_d, &samples, sizeof(int)) );
CHECK_CUDA_CALL( cudaMemcpyToSymbol(K_d, &K, sizeof(int)) );
CHECK_CUDA_CALL( cudaMemcpyToSymbol(lines_d, &lines, sizeof(int)) );
/* Set to 100% the amount of shared memory needed */
CHECK_CUDA_CALL( cudaFuncSetAttribute(firstStepGPU, cudaFuncAttributePreferredSharedMemoryCarveout, carveout) );
CHECK_CUDA_CALL( cudaFuncSetAttribute(recalculateCentroidsStep2GPU, cudaFuncAttributePreferredSharedMemoryCarveout, carveout) );
/*
*
* END CUDA MEMORY ALLOCATION
*
*/
//END CLOCK*****************************************
end = omp_get_wtime();
printf("\nMemory allocation: %f seconds\n", end - start);
fflush(stdout);
cudaDeviceProp prop;
CHECK_CUDA_CALL( cudaGetDevice(0) );
CHECK_CUDA_CALL( cudaGetDeviceProperties(&prop, 0) );
printf("Max shared memory: %lu\n", prop.sharedMemPerBlock);
printf("Max threads per block: %d\n", prop.maxThreadsPerBlock);
printf("Max threads per SM: %d\n", prop.maxThreadsPerMultiProcessor);
printf("Concurrent Kernels: %s\n", prop.concurrentKernels ? "true" : "false");
printf("32 bit registers per SM: %d\n", prop.regsPerMultiprocessor);
printf("Shared memory per SM: %lu\n", prop.sharedMemPerMultiprocessor);
printf("csize: %d\n", csize);
//**************************************************
//START CLOCK***************************************
start = omp_get_wtime();
//**************************************************
/* We are using a 1 dimensional block and grid size, to maximize occupancy */
dim3 dimBlock(BLOCK_DIMX);
dim3 dimGrid(72);
do
{
it++;
/*
* changes_d: Total number of points that change centroid in this iteration.
* maxDist_d: Will contain the maximum distance between the old and the new centroids.
* If it's smaller than maxThreshold, the algorithm terminates
* pointsPerClass_d: Stores at each iteration the number of points that belong to centroid k
* auxCentroids_d: This array will store the new centroids at each iteration
*/
CHECK_CUDA_CALL( cudaMemset(changes_d, 0, sizeof(int)) );
CHECK_CUDA_CALL( cudaMemset(maxDist_d, FLT_MIN, sizeof(float)) );
CHECK_CUDA_CALL( cudaMemset(pointsPerClass_d, 0, ppcsize) );
CHECK_CUDA_CALL( cudaMemset(auxCentroids_d, 0.0, csize) );
/* First kernel */
firstStepGPU<<<dimGrid, dimBlock, csize>>>(points_d, centroids_d, classMap_d, changes_d);
CHECK_CUDA_CALL( cudaDeviceSynchronize() );
/* Second kernel */
recalculateCentroidsStep1GPU<<<dimGrid, dimBlock>>>(points_d, classMap_d, pointsPerClass_d, auxCentroids_d);
CHECK_CUDA_CALL( cudaDeviceSynchronize() );
/* Third kernel */
recalculateCentroidsStep2GPU<<<dimGrid, dimBlock, csize>>>(auxCentroids_d, pointsPerClass_d, centroids_d, maxDist_d);
CHECK_CUDA_CALL( cudaDeviceSynchronize() );
/* Fourth kernel */
recalculateCentroidsStep3GPU<<<dimGrid, dimBlock>>>(maxDist_d, centroids_d, auxCentroids_d);
CHECK_CUDA_CALL( cudaDeviceSynchronize() );
/* Copy back maxDist_d, auxCentroids_d and classMap_d in host memory */
CHECK_CUDA_CALL( cudaMemcpy(&maxDist, maxDist_d, sizeof(float), cudaMemcpyDeviceToHost) );
/* Save the number of changes for this iteration in host memory */
CHECK_CUDA_CALL( cudaMemcpy(&changes, changes_d, sizeof(int), cudaMemcpyDeviceToHost) );
sprintf(line,"\n[%d] Cluster changes: %d\tMax. centroid distance: %f", it, changes, maxDist);
outputMsg = strcat(outputMsg,line);
} while((changes>minChanges) && (it<maxIterations) && (maxDist>maxThreshold));
/*
*
* STOP HERE: DO NOT CHANGE THE CODE BELOW THIS POINT
*
*/
// Output and termination conditions
printf("%s",outputMsg);
//END CLOCK*****************************************
end = omp_get_wtime();
printf("\nComputation: %f seconds", end - start);
fflush(stdout);
//**************************************************
//START CLOCK***************************************
start = omp_get_wtime();
//**************************************************
CHECK_CUDA_CALL( cudaMemcpy(centroids, auxCentroids_d, csize, cudaMemcpyDeviceToHost) );
CHECK_CUDA_CALL( cudaMemcpy(classMap, classMap_d, cmapsize, cudaMemcpyDeviceToHost) );
CHECK_CUDA_CALL( cudaDeviceSynchronize() );
if (changes <= minChanges)
{
printf("\n\nTermination condition:\nMinimum number of changes reached: %d [%d]", changes, minChanges);
}
else if (it >= maxIterations)
{
printf("\n\nTermination condition:\nMaximum number of iterations reached: %d [%d]", it, maxIterations);
}
else
{
printf("\n\nTermination condition:\nCentroid update precision reached: %g [%g]", maxDist, maxThreshold);
}
// Writing the classification of each point to the output file.
error = writeResult(classMap, lines, argv[6]);
if(error != 0)
{
showFileError(error, argv[6]);
exit(error);
}
//Free memory
free(data);
free(classMap);
free(centroidPos);
free(centroids);
free(distCentroids);
free(pointsPerClass);
free(auxCentroids);
CHECK_CUDA_CALL( cudaFree(points_d) );
CHECK_CUDA_CALL( cudaFree(centroids_d) );
CHECK_CUDA_CALL( cudaFree(auxCentroids_d) );
CHECK_CUDA_CALL( cudaFree(maxDist_d) );
CHECK_CUDA_CALL( cudaFree(changes_d) );
CHECK_CUDA_CALL( cudaFree(classMap_d) );
CHECK_CUDA_CALL( cudaFree(pointsPerClass_d) );
//END CLOCK*****************************************
end = omp_get_wtime();
printf("\n\nMemory deallocation: %f seconds\n", end - start);
fflush(stdout);
//***************************************************/
return EXIT_SUCCESS;
}
/*
* This kernel implements the first part of the kmeans algorithm logic. It computes the distance of
* each point from all of the centroids, and saves in classMap[p] the closest centroid to point p.
* It does so by assigning a thread to each point, and iterating over each centroid.
*/
__global__
void firstStepGPU(float* point /* in */, /* WHOLE ARRAY */
float* center /* in */, /* Centroids array */
int* classMap /* in/out */, /* point i belongs to class k */
int* changes /* out */) /* number of changes made */
{
/* Global thread id */
int id = threadIdx.x + blockIdx.x * blockDim.x + ( blockIdx.y * blockDim.y + threadIdx.y ) * gridDim.x * blockDim.x + (blockIdx.z * blockDim.z + threadIdx.z) * gridDim.x * blockDim.x * gridDim.y * blockDim.y;
/* id of a thread inside a block */
int blockId = threadIdx.x;
extern __shared__ float centers[];
float minDist = FLT_MAX;
int _class = 1;
float res;
/* Shared memory allocation */
if ((K_d * samples_d) > BLOCK_DIMX)
{
centers[blockId] = center[blockId];
if (blockId == 0)
{
for (int i = 64; i < (K_d * samples_d); i++)
{
centers[i] = center[i];
}
}
} else
{
centers[blockId] = center[blockId];
}
/* Now all the centroids are stored in shared memory */
__syncthreads(); /* !!!!!!! ATTENTION: Do NOT remove this barrier !!!!!!! */
if (id < lines_d)
{
/* Iterate over each centroid and compute the distance of point id from centroid k */
for (int k = 0; k < K_d; k++)
{
res = euclideanDistanceGPU(&point[id*samples_d], ¢ers[k*samples_d]);
/* update classMap[id] if res is smaller than current shortest distance */
if (res < minDist)
{
minDist = res;
_class = k + 1;
}
}
if (classMap[id] != _class)
{
/* variable changes must be incremented atomically */
atomicAdd(changes, 1);
}
/* NOTE: Always update this variable */
classMap[id] = _class;
}
}
/*
* This kernel computes the values needed for the calculation of the new centroids. After the
* execution, auxCentroids will have stored the (not normalized) sum of all points that belong
* to each class, and pointsPerClass will contain the count of all points belonging to each class.
*/
__global__
void recalculateCentroidsStep1GPU(float* points, /* in */ /* array of points */
int* classMap, /* in */ /* point i belongs to class k */
int* pointsPerClass, /* out */ /* num of points for each class k */
float* auxCentroids) /* out */ /* new centroids are computed here */
{
/* Global thread id */
int id = threadIdx.x + blockIdx.x * blockDim.x + ( blockIdx.y * blockDim.y + threadIdx.y ) * gridDim.x * blockDim.x + (blockIdx.z * blockDim.z + threadIdx.z) * gridDim.x * blockDim.x * gridDim.y * blockDim.y;
int _class;
if (id < lines_d)
{
_class = classMap[id];
/* pointsPerClass has to be incremented atomically to avoid race condition over different threads
* belonging to the same class */
atomicAdd(&pointsPerClass[_class - 1], 1);
for (int j = 0; j < samples_d; j++)
{
atomicAdd(&auxCentroids[(_class - 1)*samples_d + j], points[id*samples_d+j]);
}
}
}
/*
* This kernel divides the sum of the values of all the points belonging to class k by the number
* of points belonging to class k.
*/
__global__
void recalculateCentroidsStep2GPU(float* auxCentroids, /* out */ /* new centroids are computed here */
int* pointsPerClass, /* in */ /* num of points for each class k */
float* centroids, /* in */ /* old centroids */
float* maxDist) /* in/out */ /* maxDistance between old and new centroids */
{
/* Global thread id */
int id = threadIdx.x + blockIdx.x * blockDim.x + ( blockIdx.y * blockDim.y + threadIdx.y ) * gridDim.x * blockDim.x + (blockIdx.z * blockDim.z + threadIdx.z) * gridDim.x * blockDim.x * gridDim.y * blockDim.y;
/* id of a thread inside a block */
int blockId = threadIdx.x;
int _class;
extern __shared__ int sharedPointsPerClass[];
/* Copy pointsPerClass into shared memory */
if (K_d <= BLOCK_DIMX)
{
if (blockId < K_d)
{
sharedPointsPerClass[blockId] = pointsPerClass[blockId];
}
} else
{
sharedPointsPerClass[blockId] = pointsPerClass[blockId];
if (blockId == 0)
{
for (int i = 64; i < K_d; i++)
{
sharedPointsPerClass[i] = pointsPerClass[i];
}
}
}
__syncthreads(); /* !!!!!!! ATTENTION: Do NOT remove this barrier !!!!!!! */
if (id < K_d)
{
_class = sharedPointsPerClass[id];
for (int j = 0; j < samples_d; j++)
{
auxCentroids[id*samples_d + j] /= _class;
}
}
}
/*
* This kernel checks whether the distance between the old centroids and the new ones is small
* enough for us to end the algorithm
*/
__global__
void recalculateCentroidsStep3GPU(float* maxDist, /* out */ /* precision in centroid distance */
float* centroids, /* in */ /* old centroids array */
float* auxCentroids) /* in */ /* new centroids */
{
/* Global thread id */
int id = threadIdx.x
+ blockIdx.x * blockDim.x
+ ( blockIdx.y * blockDim.y + threadIdx.y ) * gridDim.x * blockDim.x
+ (blockIdx.z * blockDim.z + threadIdx.z) * gridDim.x * blockDim.x * gridDim.y * blockDim.y;
float dist;
if (id < K_d)
{
dist = euclideanDistanceGPU(¢roids[id*samples_d], &auxCentroids[id*samples_d]);
if (dist > *maxDist)
{
*maxDist = dist;
}
}
/* Copy the new centroids into the centroids array */
if (id < K_d * samples_d)
{
centroids[id] = auxCentroids[id];
}
}
/* Computes the euclidean distance between point1 and point2 (both of dimensionality samples_d) */
__device__
float euclideanDistanceGPU(float* point1 /* in */, /* Point 1 */
float* point2 /* in */) /* Point 2 */
{
float dist = 0.0;
for (int i = 0; i < samples_d; i++)
{
dist += (point1[i] - point2[i]) * (point1[i] - point2[i]);
}
dist = sqrtf(dist);
return (dist);
}
/*
Function showFileError: It displays the corresponding error during file reading.
*/
void showFileError(int error, char* filename)
{
printf("Error\n");
switch (error)
{
case -1:
fprintf(stderr,"\tFile %s has too many columns.\n", filename);
fprintf(stderr,"\tThe maximum number of columns has been exceeded. MAXLINE: %d.\n", MAXLINE);
break;
case -2:
fprintf(stderr,"Error reading file: %s.\n", filename);
break;
case -3:
fprintf(stderr,"Error writing file: %s.\n", filename);
break;
}
fflush(stderr);
}
/*
Function readInput: It reads the file to determine the number of rows and columns.
*/
int readInput(char* filename, int *lines, int *samples)
{
FILE *fp;
char line[MAXLINE] = "";
char *ptr;
const char *delim = "\t";
int contlines, contsamples = 0;
contlines = 0;
if ((fp=fopen(filename,"r"))!=NULL)
{
while(fgets(line, MAXLINE, fp)!= NULL)
{
if (strchr(line, '\n') == NULL)
{
return -1;
}
contlines++;
ptr = strtok(line, delim);
contsamples = 0;
while(ptr != NULL)
{
contsamples++;
ptr = strtok(NULL, delim);
}
}
fclose(fp);
*lines = contlines;
*samples = contsamples;
return 0;
}
else
{
return -2;
}
}
/*
Function readInput2: It loads data from file.
*/
int readInput2(char* filename, float* data)
{
FILE *fp;
char line[MAXLINE] = "";
char *ptr;
const char *delim = "\t";
int i = 0;
if ((fp=fopen(filename,"rt"))!=NULL)
{
while(fgets(line, MAXLINE, fp)!= NULL)
{
ptr = strtok(line, delim);
while(ptr != NULL)
{
data[i] = atof(ptr);
i++;
ptr = strtok(NULL, delim);
}
}
fclose(fp);
return 0;
}
else
{
return -2; //No file found
}
}
/*
Function writeResult: It writes in the output file the cluster of each sample (point).
*/
int writeResult(int *classMap, int lines, const char* filename)
{
FILE *fp;
if ((fp=fopen(filename,"wt"))!=NULL)
{
for(int i=0; i<lines; i++)
{
fprintf(fp,"%d\n",classMap[i]);
}
fclose(fp);
return 0;
}
else
{
return -3; //No file found
}
}
/*
Function initCentroids: This function copies the values of the initial centroids, using their
position in the input data structure as a reference map.
*/
void initCentroids(const float *data, float* centroids, int* centroidPos, int samples, int K)
{
int i;
int idx;
for(i=0; i<K; i++)
{
idx = centroidPos[i];
memcpy(¢roids[i*samples], &data[idx*samples], (samples*sizeof(float)));
}
}