forked from hpenedones/luacnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfv_cnn.lua
197 lines (164 loc) · 6.2 KB
/
fv_cnn.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
require "torch"
require "image"
require "nn"
require "math"
require "paths"
image_width= 39
learningRate = 0.01
maxIterations = 10000
function loadBMP(fn)
local s=io.open(fn,"rb"):read("*all")
local d={}
local i=0
for i=1,128*128 do d[i]=s:byte(1078+i)/255 end
local ret = torch.Tensor(d)
ret=image.scale(ret:resize(128, 128), image_width, image_width)
return ret:resize(1, image_width, image_width)
end
--print(loadBMP("/media/d/work/fv/Camera/fv-images/norm/1_1.bmp"))
-- returns a dataset
function create_dataset(path, test_num)
local dataset={}
local names={}
local all_index={}
local index=0
for f in paths.files(path) do
local fn=path..'/'..f
if f:sub(-4)=='.bmp' and paths.filep(fn) then
local f=f:sub(1, -5)
local name = f:match(".*_")
name=name:sub(1, -2)
local i=names[name]
if i==nil then
i=#names+1
names[name]=i
names[i]=name
end
index=index+1
dataset[index]={loadBMP(fn), i, f}
if all_index[i]==nil then
all_index[i]={index}
else
local ii=all_index[i]
ii[#ii+1]=index
end
end
end
local test={}
local train={}
local images = {}
local image_count = {}
for i=1, #names do
images[i]=torch.Tensor((image_width+1)*10, (image_width+1)*10)
images[i]:fill(0)
image_count[i]=0
end
local test_tag=torch.Tensor(5,5)
test_tag:fill(1)
for i=1, #all_index do
local files=all_index[i]
for index=1, #files do
local data=dataset[files[index]]
local c=image_count[data[2]]
local x,y=c%10,0
y=(c-x)/10
--print('class:'..data[2], 'image count:'..c, 'col:'..x, 'row:'..y)
if y<10 then
x, y=x*(image_width+1), y*(image_width+1)
local image=images[data[2]]
image[{{y+1, y+image_width}, {x+1, x+image_width}}]=data[1]
if index>=#files-test_num then -- for test, show a tag
image[{{y+1, y+5}, {x+1, x+5}}]=test_tag
end
image_count[data[2]]=c+1
end
if index < #files-test_num then
train[#train+1]=data
else
test[#test+1]=data
end
end
end
for i=1, #names do
image.save(names[i]..'.jpg', images[i])
end
return names, train, test
end
-- here we set up the architecture of the neural network
function create_network(size, nb_outputs)
print("create_network: input image size="..size..",", "output number:"..nb_outputs)
local normkernel1 = image.gaussian1D(21)
local normkernel2 = image.gaussian1D(15)
local ann = nn.Sequential() -- make a multi-layer structure
local filter_size, filter_num, subsample_size, subsample_step=13, 40, 3, 3
-- 16x16x1
ann:add(nn.SpatialSubtractiveNormalization(1, normkernel1))
ann:add(nn.SpatialConvolution(1, filter_num, filter_size, filter_size)) -- becomes 12x12x6
ann:add(nn.SpatialSubSampling(filter_num, subsample_size, subsample_size, subsample_step, subsample_step)) -- becomes 6x6x6
ann:add(nn.SpatialSubtractiveNormalization(filter_num, normkernel2))
local l2size=size-filter_size+1
local unit_size=(l2size-subsample_size)/subsample_step+1
local unit_num=filter_num*unit_size*unit_size
print(' 1@'..size..'x'..size..
' -> '..filter_num..'@'..l2size..'x'..l2size..
' -> '..filter_num..'@'..unit_size..'x'..unit_size..
' -> '..nb_outputs)
ann:add(nn.Reshape(unit_num))
ann:add(nn.Tanh())
ann:add(nn.Linear(unit_num, nb_outputs))
ann:add(nn.LogSoftMax())
return ann
end
-- train a Neural Netowrk
function train_network( network, dataset)
print( "Training the network" )
local criterion = nn.ClassNLLCriterion()
for iteration=1,maxIterations do
local index = math.random(#dataset) -- pick example at random
local input = dataset[index][1]
local output = dataset[index][2]
if iteration%2000==0 then
print("\titeration: "..iteration.."/"..maxIterations)
end
local inp=network:forward(input)
--if iteration==1 then print(input:size(), output, inp:size(), #dataset) end
criterion:forward(inp, output)
network:zeroGradParameters()
network:backward(input, criterion:backward(network.output, output))
network:updateParameters(learningRate)
end
end
function test_predictor(predictor, test_dataset, classes_names)
local mistakes = 0
local tested_samples = 0
print( "----------------------" )
print( "Index Label Prediction" )
for i=1, #test_dataset do
local input = test_dataset[i][1]
local class_id = test_dataset[i][2]
local responses_per_class = predictor:forward(input)
local probabilites_per_class = torch.exp(responses_per_class)
local probability, prediction = torch.max(probabilites_per_class, 1)
if prediction[1] ~= class_id then
mistakes = mistakes + 1
local label = classes_names[ class_id ]
local predicted_label = classes_names[ prediction[1] ]
print(probabilites_per_class)
print("", "error:", test_dataset[i][3], label..'('..class_id..') -> '..predicted_label..'('..prediction[1]..')' )
end
tested_samples = tested_samples + 1
end
local test_err = mistakes*100/tested_samples
print ("Test error " .. test_err .. "% ( " .. mistakes .. " out of " .. tested_samples .. " )")
end
-- main routine
function main()
local classes_names, training_dataset, testing_dataset = create_dataset('fv-images/', 7)
print("classes number:", #classes_names)
print("training_dataset:", #training_dataset)
print("testing_dataset :", #testing_dataset)
local network = create_network(image_width, #classes_names)
train_network(network, training_dataset)
test_predictor(network, testing_dataset, classes_names)
end
main()