This repository has been archived by the owner on Mar 22, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel_wrp.py
531 lines (436 loc) · 20.6 KB
/
model_wrp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
"""
Model generator based on high level properties
"""
import logging
from utils import for_tf_or_th
import keras
import keras.backend as K
from keras.layers import (BatchNormalization, Dense, Input, GRU, concatenate,
TimeDistributed, Dropout)
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Model
from keras.optimizers import Adam
if K.backend() == 'theano':
import theano.gpuarray.ctc as ctc_th
logging.info('using theano.gpuarray.ctc')
k2 = keras.__version__[0] == '2'
if k2:
from keras.layers import Conv1D
def batch_norm_compat(self, mode=0, **kwargs):
if mode != 0:
logger.warn('ignoring unsuported batchnorm mode of {} on keras 2'
.format(mode))
self._v2_init(**kwargs)
BatchNormalization._v2_init = BatchNormalization.__init__
BatchNormalization.__init__ = batch_norm_compat
else:
from keras.layers import Convolution1D
def v1_compat(self, *args, **kwargs):
v1_dict = {}
for k, v in kwargs.items():
if k == 'padding':
v1key = 'border_mode'
elif k == 'strides':
v1key = 'subsample_length'
elif k == 'kernel_initializer':
v1key = 'init'
else:
v1key = k
v1_dict[v1key] = v
self._v1_init(*args, **v1_dict)
Conv1D = Convolution1D
Conv1D._v1_init = Conv1D.__init__
Conv1D.__init__ = v1_compat
Dense._v1_init = Dense.__init__
Dense.__init__ = v1_compat
GRU._v1_init = GRU.__init__
GRU.__init__ = v1_compat
logger = logging.getLogger(__name__)
def duration_cost(y, y_pred):
"""" A Loss function for duration costs """
return (y - y_pred)**2
def model_output_dim(out_type):
""" Return output dimention of model based on output type
Args:
out_type: string either 'text' or 'arpabet'
"""
if out_type == 'text':
from char_map import index_map
return len(index_map) + 1
if out_type == 'arpabet':
from arpabets import index_map
return len(index_map) + 1
raise ValueError
class ModelWrapper(object):
def __init__(self, outputs='text', stateful=False):
if outputs == 'text':
self.output_dim = model_output_dim('text')
elif outputs == 'arpabet':
self.output_dim = model_output_dim('arpabet')
elif isinstance(outputs, list) and (sorted(outputs) ==
['arpabet', 'text']):
self.vocab_dim = model_output_dim('text')
self.phono_dim = model_output_dim('arpabet')
else:
raise ValueError
self.outputs = outputs
self.stateful = stateful
self.branch_vars = {}
self.model = None
@staticmethod
def plug_model(old):
if not isinstance(old, ModelWrapper):
raise ValueError
new = ModelWrapper(old.outputs, stateful=old.stateful)
for attr in ('model', '_branch_labels', 'branch_vars', '_ctc_in_lens',
'branch_outputs', 'acoustic_input'):
setattr(new, attr, getattr(old, attr))
return new
@property
def branch_labels(self):
if getattr(self, '_branch_labels', None) is None:
d = dict()
for bname in self.branch_vars.keys():
d[bname] = (
K.placeholder(ndim=2, dtype='int32'),
K.placeholder(ndim=1, dtype='int32')
)
self._branch_labels = d
return self._branch_labels
@property
def ctc_in_lens(self):
if getattr(self, '_ctc_in_lens', None) is None:
self._ctc_in_lens = K.placeholder(ndim=1, dtype='int32')
return self._ctc_in_lens
def compile_train_fn(self, learning_rate=2e-4):
""" Build the CTC training routine for speech models.
Args:
learning_rate (float)
Returns:
train_fn (theano.function): Function that takes in acoustic inputs,
and updates the model. Returns network outputs and ctc cost
"""
logger.info("Building train_fn")
f_inputs = [self.acoustic_input, self.ctc_in_lens]
f_outputs = []
f_updates = []
for branch in self.branch_outputs:
labels, label_lens = self.branch_labels[branch.name]
f_inputs.append(labels)
f_inputs.append(label_lens)
if K.backend() == 'tensorflow':
network_output = branch.output
ctc_cost = K.mean(K.ctc_batch_cost(labels, network_output,
self.ctc_in_lens,
label_lens))
else:
network_output = branch.output.dimshuffle((1, 0, 2))
ctc_cost = ctc_th.gpu_ctc(network_output, labels,
self.ctc_in_lens).mean()
f_outputs.extend([network_output, ctc_cost])
trainable_vars = self.branch_vars[branch.name]
optmz = Adam(lr=learning_rate, clipnorm=100)
f_updates.extend(optmz.get_updates(trainable_vars, [], ctc_cost))
f_inputs.append(K.learning_phase())
self.train_fn = K.function(f_inputs, f_outputs, f_updates)
return self.train_fn
def compile_test_fn(self):
""" Build a testing routine for speech models.
Returns:
val_fn (theano.function): Function that takes in acoustic inputs,
and calculates the loss. Returns network outputs and ctc cost
"""
logger.info("Building val_fn")
f_inputs = [self.acoustic_input, self.ctc_in_lens]
f_outputs = []
for branch in self.branch_outputs:
labels, label_lens = self.branch_labels[branch.name]
if K.backend() == 'tensorflow':
network_output = branch.output
ctc_cost = K.mean(K.ctc_batch_cost(labels, network_output,
self.ctc_in_lens,
label_lens))
else:
network_output = branch.output.dimshuffle((1, 0, 2))
ctc_cost = ctc_th.gpu_ctc(network_output, labels,
self.ctc_in_lens).mean()
f_inputs.extend([labels, label_lens])
f_outputs.extend([network_output, ctc_cost])
f_inputs.append(K.learning_phase())
self.val_fn = K.function(f_inputs, f_outputs)
return self.val_fn
def compile_output_fn(self):
""" Build a function that simply calculates the output of a model
Returns:
output_fn (theano.function): Function that takes in acoustic inputs,
and returns network outputs
"""
logger.info("Bulding output_fn")
if self.outputs in ['text', 'arpabet']:
output_idx = 0
elif self.outputs == ['arpabet', 'text']:
output_idx = 1
else:
raise ValueError
output = self.model.outputs[output_idx]
if K.backend() == 'theano':
output = output.dimshuffle((1, 0, 2))
output_fn = K.function([self.acoustic_input, K.learning_phase()],
[output])
return output_fn
class GruModelWrapper(ModelWrapper):
""" Recurrent network (CTC) for speech with GRU units """
def compile(self, input_dim=161, recur_layers=3, nodes=1024,
conv_context=11, conv_border_mode='valid', conv_stride=2,
activation='relu', lirelu_alpha=.3, dropout=False,
initialization='glorot_uniform', batch_norm=True,
stateful=False, mb_size=None):
logger.info("Building gru model")
assert self.model is None
leaky_relu = False
if activation == 'lirelu':
activation = 'linear'
leaky_relu = True
if stateful:
if mb_size is None:
raise ValueError("Stateful GRU layer needs to know batch size")
acoustic_input = Input(batch_shape=(mb_size, None, input_dim),
name='acoustic_input')
else:
acoustic_input = Input(shape=(None, input_dim),
name='acoustic_input')
# Setup the network
conv_1d = Conv1D(nodes, conv_context, name='conv_1d',
padding=conv_border_mode, strides=conv_stride,
kernel_initializer=initialization,
activation=activation)(acoustic_input)
if batch_norm:
output = BatchNormalization(name='bn_conv_1d', mode=2)(conv_1d)
else:
output = conv_1d
if leaky_relu:
output = LeakyReLU(alpha=lirelu_alpha)(output)
if dropout:
output = Dropout(dropout)(output)
for r in range(recur_layers):
output = GRU(nodes, name='rnn_{}'.format(r + 1),
kernel_initializer=initialization, stateful=stateful,
return_sequences=True, activation=activation)(output)
if batch_norm:
bn_layer = BatchNormalization(name='bn_rnn_{}'.format(r + 1),
mode=2)
output = bn_layer(output)
if leaky_relu:
output = LeakyReLU(alpha=lirelu_alpha)(output)
output_branch = TimeDistributed(Dense(
self.output_dim, name='text_dense', init=initialization,
activation=for_tf_or_th('softmax', 'linear')
), name=self.outputs)
network_output = output_branch(output)
self.model = Model(input=acoustic_input, output=[network_output])
self.branch_outputs = [output_branch]
self.branch_vars[output_branch.name] = self.model.trainable_weights
self.acoustic_input = self.model.inputs[0]
return self.model
class HalfPhonemeModelWrapper(ModelWrapper):
def __init__(self, *args, **kwargs):
super(HalfPhonemeModelWrapper, self).__init__(['arpabet', 'text'],
*args, **kwargs)
def compile(self, input_dim=161, recur_layers=3, nodes=1024,
conv_context=11, conv_padding='valid', mb_size=16,
activation='relu', lirelu_alpha=.3, conv_stride=2,
initialization='glorot_uniform', fast_text=False,
batch_norm=True, dropout=False, stateful=False):
logger.info("Building half phoneme model")
assert self.model is None
leaky_relu = False
if activation == 'lirelu':
activation = 'linear'
leaky_relu = True
if stateful:
if mb_size is None:
raise ValueError("Stateful GRU layer needs to know batch size")
acoustic_input = Input(batch_shape=(mb_size, None, input_dim),
name='acoustic_input')
else:
acoustic_input = Input(shape=(None, input_dim),
name='acoustic_input')
branch = 'phoneme'
self.branch_vars[branch] = []
conv_1dl = Conv1D(nodes, conv_context, name='conv_1d',
padding=conv_padding, strides=conv_stride,
kernel_initializer=initialization,
activation=activation)
output = conv_1dl(acoustic_input)
self.branch_vars[branch].extend(conv_1dl.trainable_weights)
if batch_norm:
bn_l = BatchNormalization(name='bn_conv_1d')
output = bn_l(output)
self.branch_vars[branch].extend(bn_l.trainable_weights)
if leaky_relu:
output = LeakyReLU(alpha=lirelu_alpha)(output)
if dropout:
output = Dropout(dropout)(output)
for r in range(recur_layers):
gru_l = GRU(nodes, activation=activation, stateful=stateful,
name='rnn_{}'.format(r + 1),
kernel_initializer=initialization,
return_sequences=True)
output = gru_l(output)
self.branch_vars[branch].extend(gru_l.trainable_weights)
if batch_norm:
bn_l = BatchNormalization(name='bn_rnn_{}'.format(r + 1),
mode=2)
output = bn_l(output)
self.branch_vars[branch].extend(bn_l.trainable_weights)
if leaky_relu:
output = LeakyReLU(alpha=lirelu_alpha)(output)
if r+1 == recur_layers // 2:
phoneme_dense = Dense(
self.phono_dim, name='phoneme_dense',
activation=for_tf_or_th('softmax', 'linear'),
kernel_initializer=initialization)
phoneme_branch = TimeDistributed(phoneme_dense, name=branch)
phoneme_out = phoneme_branch(output)
branch = 'text'
if fast_text:
self.branch_vars[branch] = list(self.branch_vars['phoneme'])
else:
self.branch_vars[branch] = []
text_dense = Dense(self.vocab_dim, name='text_dense',
activation=for_tf_or_th('softmax', 'linear'),
kernel_initializer=initialization)
text_branch = TimeDistributed(text_dense, name=branch)
text_out = text_branch(output)
self.branch_vars['phoneme'].extend(phoneme_branch.trainable_weights)
self.branch_vars['text'].extend(text_branch.trainable_weights)
self.model = Model(input=acoustic_input, output=[phoneme_out, text_out])
self.branch_outputs = [phoneme_branch, text_branch]
self.acoustic_input = self.model.inputs[0]
return self.model
class TwoHornModelWrapper(ModelWrapper):
def compile(self, input_dim=161, phoneme_recurs=2, nodes=1024,
text_recurs=3, conv_context=11, conv_stride=2,
conv_padding='valid', mb_size=16,
initialization='glorot_uniform', stateful=False):
assert self.model is None
if stateful:
if mb_size is None:
raise ValueError("Stateful GRU layer needs to know batch size")
acoustic_input = Input(batch_shape=(mb_size, None, input_dim),
name='acoustic_input')
else:
acoustic_input = Input(shape=(None, input_dim),
name='acoustic_input')
branch = 'phoneme'
self.branch_vars[branch] = []
ph_conv1 = Conv1D(nodes, conv_context, name='ph_conv1',
padding=conv_padding, strides=conv_stride,
kernel_initializer=initialization, activation='relu')
ph_output = ph_conv1(acoustic_input)
self.branch_vars[branch].extend(ph_conv1.trainable_weights)
bn_l = BatchNormalization(name='bn_ph_conv1')
ph_output = bn_l(ph_output)
self.branch_vars[branch].extend(bn_l.trainable_weights)
for r in range(phoneme_recurs):
gru_l = GRU(nodes, activation='relu', name='ph_rnn_{}'.format(r+1),
kernel_initializer=initialization,
stateful=stateful, return_sequences=True)
ph_output = gru_l(ph_output)
self.branch_vars[branch].extend(gru_l.trainable_weights)
bn_l = BatchNormalization(name='bn_ph_rnn_{}'.format(r+1))
ph_output = bn_l(ph_output)
self.branch_vars[branch].extend(bn_l.trainable_weights)
phoneme_dense = Dense(self.phono_dim, name='phoneme_dense',
activation=for_tf_or_th('softmax', 'linear'),
kernel_initializer=initialization)
phoneme_branch = TimeDistributed(phoneme_dense, name=branch)
phoneme_out = phoneme_branch(ph_output)
branch = 'text'
self.branch_vars[branch] = []
tx_conv1 = Conv1D(nodes, conv_context, name='tx_conv1',
padding=conv_padding, strides=conv_stride,
kernel_initializer=initialization, activation='relu')
tx_output = tx_conv1(acoustic_input)
self.branch_vars[branch].extend(tx_conv1.trainable_weights)
bn_l = BatchNormalization(name='bn_tx_conv1')
tx_output = bn_l(tx_output)
self.branch_vars[branch].extend(bn_l.trainable_weights)
for r in range(text_recurs-1):
gru_l = GRU(nodes, activation='relu', name='tx_rnn_{}'.format(r+1),
kernel_initializer=initialization,
stateful=stateful, return_sequences=True)
tx_output = gru_l(tx_output)
self.branch_vars[branch].extend(gru_l.trainable_weights)
bn_l = BatchNormalization(name='bn_tx_rnn_{}'.format(r+1))
tx_output = bn_l(tx_output)
self.branch_vars[branch].extend(bn_l.trainable_weights)
output = concatenate([ph_output, tx_output])
mix_l = Dense(nodes, name='mix_dense', activation='linear',
kernel_initializer=initialization)
output = mix_l(output)
self.branch_vars[branch].extend(mix_l.trainable_weights)
gru_l = GRU(nodes, activation='relu',
name='tx_rnn_{}'.format(text_recurs),
kernel_initializer=initialization, stateful=stateful,
return_sequences=True)
output = gru_l(output)
self.branch_vars[branch].extend(gru_l.trainable_weights)
bn_l = BatchNormalization(name='bn_tx_rnn_{}'.format(text_recurs))
output = bn_l(output)
self.branch_vars[branch].extend(bn_l.trainable_weights)
text_dense = Dense(self.vocab_dim, name='text_dense',
activation=for_tf_or_th('softmax', 'linear'),
kernel_initializer=initialization)
text_branch = TimeDistributed(text_dense, name=branch)
text_out = text_branch(output)
self.branch_vars['phoneme'].extend(phoneme_branch.non_trainable_weights)
self.branch_vars['text'].extend(text_branch.non_trainable_weights)
self.model = Model(input=acoustic_input, output=[phoneme_out, text_out])
self.branch_outputs = [phoneme_branch, text_branch]
self.acoustic_input = self.model.inputs[0]
return self.model
class ConvOverConvModelWrapper(ModelWrapper):
""" Build a recurrent network (CTC) for speech with GRU units over
multiple convolution layers"""
def compile(self, conv_props, input_dim=161, recur_layers=3,
nodes=1024, conv_border_mode='valid',
initialization='glorot_uniform', batch_norm=True,
stateful=False, mb_size=None):
logger.info("Building gru model")
assert self.model is None
if stateful:
if mb_size is None:
raise ValueError("Stateful GRU layer needs to know batch size")
acoustic_input = Input(batch_shape=(mb_size, None, input_dim),
name='acoustic_input')
else:
acoustic_input = Input(shape=(None, input_dim),
name='acoustic_input')
# Setup the network
output = acoustic_input
for (c, (filters, size, stride)) in enumerate(conv_props):
output = Conv1D(filters, size, name='conv_1d_{}'.format(c),
padding=conv_border_mode, strides=stride,
kernel_initializer=initialization,
activation='relu')(output)
if batch_norm:
output = BatchNormalization(name='bn_conv_1d', mode=2)(output)
for r in range(recur_layers):
output = GRU(nodes, activation='relu', name='rnn_{}'.format(r + 1),
kernel_initializer=initialization,
stateful=stateful, return_sequences=True)(output)
if batch_norm:
bn_layer = BatchNormalization(name='bn_rnn_{}'.format(r + 1),
mode=2)
output = bn_layer(output)
output_branch = TimeDistributed(Dense(
self.output_dim, name='dense', init=initialization,
activation=for_tf_or_th('softmax', 'linear')
), name=self.outputs)
network_output = output_branch(output)
self.model = Model(input=acoustic_input, output=[network_output])
self.branch_outputs = [output_branch]
self.branch_vars[output_branch.name] = self.model.trainable_weights
self.acoustic_input = self.model.inputs[0]
return self.model