-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
179 lines (148 loc) · 6.11 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch
import random
import numpy as np
from collections import deque
from snake import SnakeGame
from model import Linear_QNet, QTrainer
from helper import plot
# print(torch.cuda.is_available())
# print(torch.cuda.get_device_name(0))
MAX_MEMORY = 100000
BATCH_SIZE = 1000
LR = 0.001
class Agent:
def __init__(self):
self.n_games = 0
self.epsilon = 0 # randomness
self.gamma = 0.9 # discount rate
self.memory = deque(maxlen=MAX_MEMORY) # popleft()
self.model = Linear_QNet(11, 150, 3)
self.trainer = QTrainer(self.model, lr=LR, gamma=self.gamma)
def get_state(self, game):
# point_l = [game.head_x - game.square_size, game.head_y]
# point_r = [game.head_x + game.square_size, game.head_y]
# point_u = [game.head_x, game.head_y - game.square_size]
# point_d = [game.head_x, game.head_y + game.square_size]
dir_r = game.direction[0]
dir_l = game.direction[1]
dir_u = game.direction[2]
dir_d = game.direction[3]
state = []
if dir_r:
state.append(game.vision([1, 0, 0, 0])) #straight (right)
state.append(game.vision([0, 0, 0, 1])) #right (down)
state.append(game.vision([0, 0, 1, 0])) #left (up)
elif dir_l:
state.append(game.vision([0, 1, 0, 0])) #straight (left)
state.append(game.vision([0, 0, 1, 0])) #right(up)
state.append(game.vision([0, 0, 0, 1])) #left (down)
elif dir_u:
state.append(game.vision([0, 0, 1, 0])) #straight (up)
state.append(game.vision([1, 0, 0, 0])) #right (right)
state.append(game.vision([0, 1, 0, 0])) #left (left)
elif dir_d:
state.append(game.vision([0, 0, 0, 1])) #straight (down)
state.append(game.vision([0, 1, 0, 0])) #right (left)
state.append(game.vision([1, 0, 0, 0])) #left (right)
state.append(dir_r)
state.append(dir_l)
state.append(dir_u)
state.append(dir_d)
# Food location
if dir_u: # facing up
state.append(game.apple_x < game.head_x) # food left
state.append(game.apple_x > game.head_x) # food right
state.append(game.apple_y < game.head_y) # food up
state.append(game.apple_y > game.head_y) # food down
elif dir_d:
state.append(game.apple_x > game.head_x)
state.append(game.apple_x < game.head_x)
state.append(game.apple_y > game.head_y)
state.append(game.apple_y < game.head_y)
elif dir_l:
state.append(game.apple_y > game.head_y)
state.append(game.apple_y < game.head_y)
state.append(game.apple_x < game.head_x)
state.append(game.apple_x > game.head_x)
elif dir_r:
state.append(game.apple_y < game.head_y)
state.append(game.apple_y > game.head_y)
state.append(game.apple_x > game.head_x)
state.append(game.apple_x < game.head_x)
# print(state)
return np.array(state, dtype=float)
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done)) # popleft if MAX_MEMORY is reached
def train_long_memory(self):
if len(self.memory) > BATCH_SIZE:
mini_sample = random.sample(self.memory, BATCH_SIZE) # list of tuples
else:
mini_sample = self.memory
states, actions, rewards, next_states, dones = zip(*mini_sample)
self.trainer.train_step(states, actions, rewards, next_states, dones)
#for state, action, reward, nexrt_state, done in mini_sample:
# self.trainer.train_step(state, action, reward, next_state, done)
def train_short_memory(self, state, action, reward, next_state, done):
self.trainer.train_step(state, action, reward, next_state, done)
def get_action(self, state):
# random moves: tradeoff exploration / exploitation
self.epsilon = min(25, 400 - self.n_games)
final_move = [0,0,0]
# if state[0] <= 0.05:
# self.epsilon = max(250, self.epsilon)
if random.randint(0, 500) < self.epsilon:
move = random.randint(0, 2)
final_move[move] = 1
else:
state0 = torch.tensor(state, dtype=torch.float)
prediction = self.model(state0)
move = torch.argmax(prediction).item()
final_move[move] = 1
return final_move
def train():
plot_scores = []
plot_mean_scores = []
total_score = 0
record = 0
agent = Agent()
speed = 300
game = SnakeGame(speed)
game.restart()
while True:
# game.clock.tick(game.speed)
# get old state
state_old = agent.get_state(game)
# get move
final_move = agent.get_action(state_old)
# perform move and get new state
reward, done, score, speedChange = game.go(final_move)
# print(final_move)
state_new = agent.get_state(game)
# train short memory
agent.train_short_memory(state_old, final_move, reward, state_new, done)
# remember
agent.remember(state_old, final_move, reward, state_new, done)
if speedChange == "Up":
speed += 10
print("speed: ", speed)
elif speedChange == "Down":
speed -= 10
print("speed:", speed)
if done:
# train long memory, plot result
del game
game = SnakeGame(speed)
# game.restart()
agent.n_games += 1
agent.train_long_memory()
if score > record:
record = score
agent.model.save()
print('Game', agent.n_games, 'Score', score, 'Record:', record)
plot_scores.append(score)
total_score += score
mean_score = total_score / agent.n_games
plot_mean_scores.append(mean_score)
plot(plot_scores, plot_mean_scores)
if __name__ == '__main__':
train()