-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
184 lines (151 loc) · 6.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import sys
from contextlib import asynccontextmanager
import uvicorn
from fastapi import FastAPI
from agent_memory_server import utils
from agent_memory_server.api import router as memory_router
from agent_memory_server.config import settings
from agent_memory_server.docket_tasks import register_tasks
from agent_memory_server.healthcheck import router as health_router
from agent_memory_server.llms import MODEL_CONFIGS, ModelProvider
from agent_memory_server.logging import configure_logging, get_logger
from agent_memory_server.utils import ensure_redisearch_index, get_redis_conn
configure_logging()
logger = get_logger(__name__)
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Initialize the application on startup"""
logger.info("Starting Redis Agent Memory Server 🤘")
# Check for required API keys
available_providers = []
if settings.openai_api_key:
available_providers.append(ModelProvider.OPENAI)
else:
logger.warning("OpenAI API key not set, OpenAI models will not be available")
if settings.anthropic_api_key:
available_providers.append(ModelProvider.ANTHROPIC)
else:
logger.warning(
"Anthropic API key not set, Anthropic models will not be available"
)
# Check if the configured models are available
generation_model_config = MODEL_CONFIGS.get(settings.generation_model)
embedding_model_config = MODEL_CONFIGS.get(settings.embedding_model)
if (
generation_model_config
and generation_model_config.provider not in available_providers
):
logger.warning(
f"Selected generation model {settings.generation_model} requires {generation_model_config.provider} API key"
)
if (
embedding_model_config
and embedding_model_config.provider not in available_providers
):
logger.warning(
f"Selected embedding model {settings.embedding_model} requires {embedding_model_config.provider} API key"
)
# If long-term memory is enabled but OpenAI isn't available, warn user
if settings.long_term_memory and ModelProvider.OPENAI not in available_providers:
logger.warning(
"Long-term memory requires OpenAI for embeddings, but OpenAI API key is not set"
)
# Set up RediSearch index if long-term memory is enabled
if settings.long_term_memory:
redis = get_redis_conn()
# Get embedding dimensions from model config
embedding_model_config = MODEL_CONFIGS.get(settings.embedding_model)
vector_dimensions = (
str(embedding_model_config.embedding_dimensions)
if embedding_model_config
else "1536"
)
distance_metric = "COSINE"
try:
await ensure_redisearch_index(
redis,
index_name=settings.redisvl_index_name,
vector_dimensions=vector_dimensions,
distance_metric=distance_metric,
)
except Exception as e:
logger.error(f"Failed to ensure RediSearch index: {e}")
raise
# Initialize Docket for background tasks if enabled
if settings.use_docket:
try:
await register_tasks()
logger.info("Initialized Docket for background tasks")
logger.info("To run the worker, use one of these methods:")
logger.info(
"1. CLI: docket worker --tasks agent_memory_server.docket_tasks:task_collection"
)
logger.info("2. Python: python -m agent_memory_server.worker")
except Exception as e:
logger.error(f"Failed to initialize Docket: {e}")
raise
# Show available models
openai_models = [
model
for model, config in MODEL_CONFIGS.items()
if config.provider == ModelProvider.OPENAI
and ModelProvider.OPENAI in available_providers
]
anthropic_models = [
model
for model, config in MODEL_CONFIGS.items()
if config.provider == ModelProvider.ANTHROPIC
and ModelProvider.ANTHROPIC in available_providers
]
if openai_models:
logger.info(f"Available OpenAI models: {', '.join(openai_models)}")
if anthropic_models:
logger.info(f"Available Anthropic models: {', '.join(anthropic_models)}")
logger.info(
"Redis Agent Memory Server initialized",
window_size=settings.window_size,
generation_model=settings.generation_model,
embedding_model=settings.embedding_model,
long_term_memory=settings.long_term_memory,
)
yield
logger.info("Shutting down Redis Agent Memory Server")
if utils._redis_pool:
await utils._redis_pool.aclose()
# Create FastAPI app
app = FastAPI(title="Redis Agent Memory Server", lifespan=lifespan)
app.include_router(health_router)
app.include_router(memory_router)
def on_start_logger(port: int):
"""Log startup information"""
print("\n-----------------------------------")
print(f"🧠 Redis Agent Memory Server running on port: {port}")
print("-----------------------------------\n")
# Run the application
if __name__ == "__main__":
# Parse command line arguments for port
port = settings.port
# Check if --port argument is provided
if "--port" in sys.argv:
try:
port_index = sys.argv.index("--port") + 1
if port_index < len(sys.argv):
port = int(sys.argv[port_index])
print(f"Using port from command line: {port}")
except (ValueError, IndexError):
# If conversion fails or index out of bounds, use default
print(f"Invalid port argument, using default: {port}")
else:
print(f"No port argument provided, using default: {port}")
# Explicitly unset the PORT environment variable if it exists
if "PORT" in os.environ:
port_val = os.environ.pop("PORT")
print(f"Removed environment variable PORT={port_val}")
on_start_logger(port)
uvicorn.run(
app, # Using the app instance directly
host="0.0.0.0",
port=port,
reload=False,
)