-
Notifications
You must be signed in to change notification settings - Fork 109
/
Copy pathpagination_detector.py
221 lines (181 loc) · 9.51 KB
/
pagination_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# pagination_detector.py
import os
import json
from typing import List, Dict, Tuple, Union
from pydantic import BaseModel, Field, ValidationError
import tiktoken
from dotenv import load_dotenv
from openai import OpenAI
import google.generativeai as genai
from groq import Groq
from api_management import get_api_key
from assets import PROMPT_PAGINATION, PRICING, LLAMA_MODEL_FULLNAME, GROQ_LLAMA_MODEL_FULLNAME
load_dotenv()
import logging
class PaginationData(BaseModel):
page_urls: List[str] = Field(default_factory=list, description="List of pagination URLs, including 'Next' button URL if present")
def calculate_pagination_price(token_counts: Dict[str, int], model: str) -> float:
"""
Calculate the price for pagination based on token counts and the selected model.
Args:
token_counts (Dict[str, int]): A dictionary containing 'input_tokens' and 'output_tokens'.
model (str): The name of the selected model.
Returns:
float: The total price for the pagination operation.
"""
input_tokens = token_counts['input_tokens']
output_tokens = token_counts['output_tokens']
input_price = input_tokens * PRICING[model]['input']
output_price = output_tokens * PRICING[model]['output']
return input_price + output_price
def detect_pagination_elements(url: str, indications: str, selected_model: str, markdown_content: str) -> Tuple[Union[PaginationData, Dict, str], Dict, float]:
try:
"""
Uses AI models to analyze markdown content and extract pagination elements.
Args:
selected_model (str): The name of the OpenAI model to use.
markdown_content (str): The markdown content to analyze.
Returns:
Tuple[PaginationData, Dict, float]: Parsed pagination data, token counts, and pagination price.
"""
prompt_pagination = PROMPT_PAGINATION+"\n The url of the page to extract pagination from "+url+"if the urls that you find are not complete combine them intelligently in a way that fit the pattern **ALWAYS GIVE A FULL URL**"
if indications != "":
prompt_pagination +=PROMPT_PAGINATION+"\n\n these are the users indications that, pay special attention to them: "+indications+"\n\n below are the markdowns of the website: \n\n"
else:
prompt_pagination +=PROMPT_PAGINATION+"\n There are no user indications in this case just apply the logic described. \n\n below are the markdowns of the website: \n\n"
if selected_model in ["gpt-4o-mini", "gpt-4o-2024-08-06"]:
# Use OpenAI API
client = OpenAI(api_key=get_api_key('OPENAI_API_KEY'))
completion = client.beta.chat.completions.parse(
model=selected_model,
messages=[
{"role": "system", "content": prompt_pagination},
{"role": "user", "content": markdown_content},
],
response_format=PaginationData
)
# Extract the parsed response
parsed_response = completion.choices[0].message.parsed
# Calculate tokens using tiktoken
encoder = tiktoken.encoding_for_model(selected_model)
input_token_count = len(encoder.encode(markdown_content))
output_token_count = len(encoder.encode(json.dumps(parsed_response.dict())))
token_counts = {
"input_tokens": input_token_count,
"output_tokens": output_token_count
}
# Calculate the price
pagination_price = calculate_pagination_price(token_counts, selected_model)
return parsed_response, token_counts, pagination_price
elif selected_model == "gemini-1.5-flash":
# Use Google Gemini API
genai.configure(api_key=get_api_key("GOOGLE_API_KEY"))
model = genai.GenerativeModel(
'gemini-1.5-flash',
generation_config={
"response_mime_type": "application/json",
"response_schema": PaginationData
}
)
prompt = f"{prompt_pagination}\n{markdown_content}"
# Count input tokens using Gemini's method
input_tokens = model.count_tokens(prompt)
completion = model.generate_content(prompt)
# Extract token counts from usage_metadata
usage_metadata = completion.usage_metadata
token_counts = {
"input_tokens": usage_metadata.prompt_token_count,
"output_tokens": usage_metadata.candidates_token_count
}
# Get the result
response_content = completion.text
# Log the response content and its type
logging.info(f"Gemini Flash response type: {type(response_content)}")
logging.info(f"Gemini Flash response content: {response_content}")
# Try to parse the response as JSON
try:
parsed_data = json.loads(response_content)
if isinstance(parsed_data, dict) and 'page_urls' in parsed_data:
pagination_data = PaginationData(**parsed_data)
else:
pagination_data = PaginationData(page_urls=[])
except json.JSONDecodeError:
logging.error("Failed to parse Gemini Flash response as JSON")
pagination_data = PaginationData(page_urls=[])
# Calculate the price
pagination_price = calculate_pagination_price(token_counts, selected_model)
return pagination_data, token_counts, pagination_price
elif selected_model == "Llama3.1 8B":
# Use Llama model via OpenAI API pointing to local server
openai.api_key = "lm-studio"
openai.api_base = "http://localhost:1234/v1"
response = openai.ChatCompletion.create(
model=LLAMA_MODEL_FULLNAME,
messages=[
{"role": "system", "content": prompt_pagination},
{"role": "user", "content": markdown_content},
],
temperature=0.7,
)
response_content = response['choices'][0]['message']['content'].strip()
# Try to parse the JSON
try:
pagination_data = json.loads(response_content)
except json.JSONDecodeError:
pagination_data = {"next_buttons": [], "page_urls": []}
# Token counts
token_counts = {
"input_tokens": response['usage']['prompt_tokens'],
"output_tokens": response['usage']['completion_tokens']
}
# Calculate the price
pagination_price = calculate_pagination_price(token_counts, selected_model)
return pagination_data, token_counts, pagination_price
elif selected_model == "Groq Llama3.1 70b":
# Use Groq client
client = Groq(api_key=get_api_key("GROQ_API_KEY"))
response = client.chat.completions.create(
model=GROQ_LLAMA_MODEL_FULLNAME,
messages=[
{"role": "system", "content": prompt_pagination},
{"role": "user", "content": markdown_content},
],
)
response_content = response.choices[0].message.content.strip()
# Try to parse the JSON
try:
pagination_data = json.loads(response_content)
except json.JSONDecodeError:
pagination_data = {"page_urls": []}
# Token counts
token_counts = {
"input_tokens": response.usage.prompt_tokens,
"output_tokens": response.usage.completion_tokens
}
# Calculate the price
pagination_price = calculate_pagination_price(token_counts, selected_model)
'''# Ensure the pagination_data is a dictionary
if isinstance(pagination_data, PaginationData):
pagination_data = pagination_data.model_dump()
elif not isinstance(pagination_data, dict):
pagination_data = {"page_urls": []}'''
return pagination_data, token_counts, pagination_price
else:
raise ValueError(f"Unsupported model: {selected_model}")
except Exception as e:
logging.error(f"An error occurred in detect_pagination_elements: {e}")
# Return default values if an error occurs
return PaginationData(page_urls=[]), {"input_tokens": 0, "output_tokens": 0}, 0.0
if __name__ == "__main__":
url="""https://scrapeme.live/shop/"""
# Define the path to your markdown file
markdown_file_path = r"C:\Users\redam\Documents\VSCode\ScrapeMaster2.0\output\scrapeme_live_2024_09_24__00_33_20\rawData_1.md"
# Read the markdown content from the file
with open(markdown_file_path, 'r', encoding='utf-8') as f:
markdown_content = f.read()
# Specify the model you want to use
selected_model = 'gemini-1.5-flash' # Replace with your desired model
# Call the detect_pagination_elements function
pagination_data, token_counts, pagination_price = detect_pagination_elements(url,"",selected_model, markdown_content)
print("Page URLs:", pagination_data.page_urls)
print("Pagination Price:", pagination_price)