-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathposthoc.py
474 lines (388 loc) · 18.4 KB
/
posthoc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import argparse
import copy
import gc
import json
import logging
import math
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import yaml
from aif360.algorithms.postprocessing import (
CalibratedEqOddsPostprocessing,
EqOddsPostprocessing,
RejectOptionClassification
)
from aif360.algorithms.preprocessing.optim_preproc_helpers.data_preproc_functions import (
load_preproc_data_german
)
from aif360.datasets import AdultDataset, BankDataset, CompasDataset
from aif360.metrics import ClassificationMetric
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import StandardScaler
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def get_data(dataset_used, protected_attribute_used):
if dataset_used == "adult":
dataset_orig = AdultDataset()
if protected_attribute_used == 1:
privileged_groups = [{'sex': 1}]
unprivileged_groups = [{'sex': 0}]
else:
privileged_groups = [{'race': 1}]
unprivileged_groups = [{'race': 0}]
elif dataset_used == "german":
dataset_orig = load_preproc_data_german()
dataset_orig.labels -= 1
if protected_attribute_used == 1:
privileged_groups = [{'sex': 1}]
unprivileged_groups = [{'sex': 0}]
else:
privileged_groups = [{'age': 1}]
unprivileged_groups = [{'age': 0}]
elif dataset_used == "compas":
dataset_orig = CompasDataset()
if protected_attribute_used == 1:
privileged_groups = [{'sex': 1}]
unprivileged_groups = [{'sex': 0}]
else:
privileged_groups = [{'race': 1}]
unprivileged_groups = [{'race': 0}]
elif dataset_used == "bank":
dataset_orig = BankDataset()
if protected_attribute_used == 1:
privileged_groups = [{'age': 1}]
unprivileged_groups = [{'age': 0}]
else:
privileged_groups = [{'race': 1}]
unprivileged_groups = [{'race': 0}]
else:
raise ValueError(f"{dataset_used} is not an available dataset.")
dataset_orig_train, dataset_orig_vt = dataset_orig.split([0.6], shuffle=True, seed=101)
dataset_orig_valid, dataset_orig_test = dataset_orig_vt.split([0.5], shuffle=True, seed=101)
return dataset_orig_train, dataset_orig_valid, dataset_orig_test, privileged_groups, unprivileged_groups
class Model(nn.Module):
def __init__(self, input_size, num_deep=10, hid=32, dropout_p=0.2):
super().__init__()
self.fc0 = nn.Linear(input_size, hid)
self.bn0 = nn.BatchNorm1d(hid)
self.fcs = nn.ModuleList([nn.Linear(hid, hid) for _ in range(num_deep)])
self.bns = nn.ModuleList([nn.BatchNorm1d(hid) for _ in range(num_deep)])
self.out = nn.Linear(hid, 2)
self.dropout = nn.Dropout(dropout_p)
def forward(self, t):
t = self.bn0(self.dropout(F.relu(self.fc0(t))))
for bn, fc in zip(self.bns, self.fcs):
t = bn(self.dropout(F.relu(fc(t))))
return torch.sigmoid(self.out(t))
def trunc_forward(self, t):
t = self.bn0(self.dropout(F.relu(self.fc0(t))))
for bn, fc in zip(self.bns, self.fcs):
t = bn(self.dropout(F.relu(fc(t))))
return t
def load_model(input_size, config):
if 'hyperparameters' in config:
return Model(input_size, **config['hyperparameters'])
else:
return Model(input_size)
def train_model(model, X_train, y_train, X_valid, y_valid):
loss_fn = torch.nn.BCELoss()
optimizer = optim.Adam(model.parameters())
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer)
patience = (math.inf, None, 0)
patience_limit = 10
for epoch in range(1001):
model.train()
batch_idxs = torch.split(torch.randperm(X_train.size(0)), 64)
train_loss = 0
for batch in batch_idxs:
X = X_train[batch, :]
y = y_train[batch]
optimizer.zero_grad()
loss = loss_fn(model(X)[:, 0], y)
loss.backward()
train_loss += loss.item()
optimizer.step()
model.eval()
with torch.no_grad():
valid_loss = loss_fn(model(X_valid)[:, 0], y_valid)
scheduler.step(valid_loss)
if epoch % 10 == 0:
if valid_loss > patience[0]:
patience = (patience[0], patience[1], patience[2]+1)
else:
patience = (valid_loss, model.state_dict(), 0)
if patience[2] > patience_limit:
print("Ending early, patience limit has been crossed without an increase in validation loss!")
model.load_state_dict(patience[1])
break
print(f'=======> Epoch: {epoch} Train loss: {train_loss / len(batch_idxs)} Valid loss: {valid_loss} Patience valid loss: {patience[0]}')
class Critic(nn.Module):
def __init__(self, sizein, num_deep=3, hid=32):
super().__init__()
self.fc0 = nn.Linear(sizein, hid)
self.fcs = nn.ModuleList([nn.Linear(hid, hid) for _ in range(num_deep)])
self.dropout = nn.Dropout(0.2)
self.out = nn.Linear(hid, 1)
def forward(self, t):
t = t.reshape(1, -1)
t = self.fc0(t)
for fc in self.fcs:
t = F.relu(fc(t))
t = self.dropout(t)
return self.out(t)
def compute_bias(y_pred, y_true, priv, metric):
def zero_if_nan(x):
return 0. if np.isnan(x) else x
gtpr_priv = zero_if_nan(y_pred[priv * y_true == 1].mean())
gfpr_priv = zero_if_nan(y_pred[priv * (1-y_true) == 1].mean())
mean_priv = zero_if_nan(y_pred[priv == 1].mean())
gtpr_unpriv = zero_if_nan(y_pred[(1-priv) * y_true == 1].mean())
gfpr_unpriv = zero_if_nan(y_pred[(1-priv) * (1-y_true) == 1].mean())
mean_unpriv = zero_if_nan(y_pred[(1-priv) == 1].mean())
if metric == "spd":
return mean_unpriv - mean_priv
elif metric == "aod":
return 0.5 * ((gfpr_unpriv - gfpr_priv) + (gtpr_unpriv - gtpr_priv))
elif metric == "eod":
return gtpr_unpriv - gtpr_priv
def objective_function(bias, performance, lam=0.75):
return lam*abs(bias) + (1-lam)*(1-performance)
def get_objective(y_pred, y_true, priv, metric):
bias = compute_bias(y_pred, y_true, priv, metric)
performance = accuracy_score(y_true, y_pred)
objective = objective_function(bias, performance)
return {'objective': objective, 'bias': bias, 'performance': performance}
def main(config):
# Setup directories to save models and results
Path('models').mkdir(exist_ok=True)
Path('results').mkdir(exist_ok=True)
# Get Data
logger.info(f"Loading Data from dataset: {config['dataset']}.")
train, valid, test, priv, unpriv = get_data(config['dataset'], config['protected'])
priv_index = train.protected_attribute_names.index(list(priv[0].keys())[0])
scale_orig = StandardScaler()
X_train = torch.tensor(scale_orig.fit_transform(train.features), dtype=torch.float32)
y_train = torch.tensor(train.labels.ravel(), dtype=torch.float32)
# p_train = train.protected_attributes[:, priv_index]
X_valid = torch.tensor(scale_orig.transform(valid.features), dtype=torch.float32)
y_valid = torch.tensor(valid.labels.ravel(), dtype=torch.float32)
p_valid = valid.protected_attributes[:, priv_index]
X_test = torch.tensor(scale_orig.transform(test.features), dtype=torch.float32)
y_test = torch.tensor(test.labels.ravel(), dtype=torch.float32)
p_test = test.protected_attributes[:, priv_index]
# Get Pretrained Model
model = load_model(X_train.size(1), config)
if Path(config['modelpath']).is_file():
logger.info(f"Loading Model from {config['modelpath']}.")
model.load_state_dict(torch.load(config['modelpath']))
else:
logger.info(f"{config['modelpath']} does not exist. Retraining model from scratch.")
train_model(model, X_train, y_train, X_valid, y_valid)
torch.save(model.state_dict(), config['modelpath'])
model_state_dict = copy.deepcopy(model.state_dict())
train = None
# Preliminaries
logger.info("Setting up preliminaries.")
model.eval()
with torch.no_grad():
# train_pred = train.copy(deepcopy=True)
# train_pred.scores = model(X_train)[:, 0].reshape(-1, 1).numpy()
valid_pred = valid.copy(deepcopy=True)
valid_pred.scores = model(X_valid)[:, 0].reshape(-1, 1).numpy()
test_pred = test.copy(deepcopy=True)
test_pred.scores = model(X_test)[:, 0].reshape(-1, 1).numpy()
def get_valid_objective(y_pred):
return get_objective(y_pred, y_valid.numpy(), p_valid, config['metric'])
def get_test_objective(y_pred):
return get_objective(y_pred, y_test.numpy(), p_test, config['metric'])
results_valid = {}
results_test = {}
# Evaluate default model
if "default" in config['models']:
logger.info("Finding best threshold for default model to minimize objective function")
threshs = np.linspace(0, 1, 1001)
accuracies = []
for thresh in threshs:
acc = accuracy_score(y_valid, valid_pred.scores > thresh)
accuracies.append(acc)
best_thresh = threshs[np.argmax(accuracies)]
logger.info("Evaluating default model with best threshold.")
model.eval()
with torch.no_grad():
y_pred = (model(X_valid)[:, 0] > best_thresh).reshape(-1).numpy()
results_valid['default'] = get_valid_objective(y_pred)
model.eval()
with torch.no_grad():
y_pred = (model(X_test)[:, 0] > best_thresh).reshape(-1).numpy()
results_test['default'] = get_test_objective(y_pred)
# Evaluate ROC
if "ROC" in config['models']:
metric_map = {'spd': "Statistical parity difference", 'aod': "Average odds difference", 'eod': "Equal opportunity difference"}
ROC = RejectOptionClassification(unprivileged_groups=unpriv,
privileged_groups=priv,
low_class_thresh=0.01, high_class_thresh=0.99,
num_class_thresh=100, num_ROC_margin=50,
metric_name=metric_map[config['metric']],
metric_ub=0.05, metric_lb=-0.05)
logger.info("Training ROC model with validation dataset.")
ROC = ROC.fit(valid, valid_pred)
logger.info("Evaluating ROC model.")
y_pred = ROC.predict(valid_pred).labels.reshape(-1)
results_valid['ROC'] = get_valid_objective(y_pred)
y_pred = ROC.predict(test_pred).labels.reshape(-1)
results_test['ROC'] = get_test_objective(y_pred)
ROC = None
# Evaluate Equality of Odds
if "EqOdds" in config['models']:
eo = EqOddsPostprocessing(privileged_groups=priv,
unprivileged_groups=unpriv)
logger.info("Training Equality of Odds model with validation dataset.")
eo = eo.fit(valid, valid_pred)
logger.info("Evaluating Equality of Odds model.")
y_pred = eo.predict(valid_pred).labels.reshape(-1)
results_valid['EqOdds'] = get_valid_objective(y_pred)
y_pred = eo.predict(test_pred).labels.reshape(-1)
results_test['EqOdds'] = get_test_objective(y_pred)
eo = None
# Evaluate Calibrated Equality of Odds
if "CalibEqOdds" in config['models']:
cost_constraint = config['CalibEqOdds']['cost_constraint']
cpp = CalibratedEqOddsPostprocessing(privileged_groups=priv,
unprivileged_groups=unpriv,
cost_constraint=cost_constraint)
logger.info("Training Calibrated Equality of Odds model with validation dataset.")
cpp = cpp.fit(valid, valid_pred)
logger.info("Evaluating Calibrated Equality of Odds model.")
y_pred = cpp.predict(valid_pred).labels.reshape(-1)
results_valid['CalibEqOdds'] = get_valid_objective(y_pred)
y_pred = cpp.predict(test_pred).labels.reshape(-1)
results_test['CalibEqOdds'] = get_test_objective(y_pred)
cpp = None
# Evaluate Random Debiasing
if "random" in config['models']:
logger.info("Generating Random Debiased models.")
rand_result = [math.inf, None, -1]
rand_model = load_model(X_train.size(1), config)
for iteration in range(config['random']['num_trials']):
rand_model.load_state_dict(model_state_dict)
for param in rand_model.parameters():
param.data = param.data * (torch.randn_like(param) * 0.1 + 1)
rand_model.eval()
with torch.no_grad():
scores = rand_model(X_valid)[:, 0].reshape(-1).numpy()
threshs = np.linspace(0, 1, 501)
objectives = []
for thresh in threshs:
objectives.append(get_valid_objective(scores > thresh)['objective'])
best_rand_thresh = threshs[np.argmin(objectives)]
best_obj = np.min(objectives)
if best_obj < rand_result[0]:
del rand_result[1]
rand_result = [best_obj, rand_model.state_dict(), best_rand_thresh]
gc.collect()
if iteration % 10 == 0:
logger.info(f"{iteration} / {config['random']['num_trials']} trials have been sampled.")
logger.info("Evaluating best random debiased model.")
rand_model.load_state_dict(rand_result[1])
rand_model.eval()
with torch.no_grad():
y_pred = (rand_model(X_valid)[:, 0] > rand_result[2]).reshape(-1).numpy()
results_valid['Random'] = get_valid_objective(y_pred)
rand_model.eval()
with torch.no_grad():
y_pred = (rand_model(X_test)[:, 0] > rand_result[2]).reshape(-1).numpy()
results_test['Random'] = get_test_objective(y_pred)
objectives = None
rand_model = None
rand_result = None
# Evaluate Adversarial
if "adversarial" in config['models']:
logger.info("Training Adversarial model.")
actor = load_model(X_train.size(1), config)
actor.load_state_dict(model_state_dict)
critic = Critic(config.get('hyperparameters', {'hid': 32})['hid']*config['adversarial']['batch_size'])
critic_optimizer = optim.Adam(critic.parameters())
critic_loss_fn = torch.nn.MSELoss()
actor_optimizer = optim.Adam(actor.parameters())
actor_loss_fn = torch.nn.BCELoss()
for epoch in range(config['adversarial']['epochs']):
for param in critic.parameters():
param.requires_grad = True
for param in actor.parameters():
param.requires_grad = False
actor.eval()
critic.train()
for step in range(config['adversarial']['critic_steps']):
critic_optimizer.zero_grad()
indices = torch.randint(0, X_valid.size(0), (config['adversarial']['batch_size'],))
cy_valid = y_valid[indices]
cX_valid = X_valid[indices]
cp_valid = p_valid[indices]
with torch.no_grad():
scores = actor(cX_valid)[:, 0].reshape(-1).numpy()
bias = compute_bias(scores, cy_valid.numpy(), cp_valid, config['metric'])
res = critic(actor.trunc_forward(cX_valid))
loss = critic_loss_fn(torch.tensor([bias]), res[0])
loss.backward()
train_loss = loss.item()
critic_optimizer.step()
if step % 100 == 0:
logger.info(f'=======> Epoch: {(epoch, step)} Critic loss: {train_loss}')
for param in critic.parameters():
param.requires_grad = False
for param in actor.parameters():
param.requires_grad = True
actor.train()
critic.eval()
for step in range(config['adversarial']['actor_steps']):
actor_optimizer.zero_grad()
indices = torch.randint(0, X_valid.size(0), (config['adversarial']['batch_size'],))
cy_valid = y_valid[indices]
cX_valid = X_valid[indices]
lam = config['adversarial']['lambda']
bias = critic(actor.trunc_forward(cX_valid))
loss = actor_loss_fn(actor(cX_valid)[:, 0], cy_valid)
loss = lam*abs(bias) + (1-lam)*loss
loss.backward()
train_loss = loss.item()
actor_optimizer.step()
if step % 100 == 0:
logger.info(f'=======> Epoch: {(epoch, step)} Actor loss: {train_loss}')
logger.info("Finding optimal threshold for Adversarial model.")
with torch.no_grad():
adv_pred = valid.copy(deepcopy=True)
adv_pred.scores = actor(X_valid)[:, 0].reshape(-1, 1).numpy()
threshs = np.linspace(0, 1, 1001)
objectives = []
for thresh in threshs:
labels = adv_pred.scores > thresh
results = get_valid_objective(labels)
objectives.append(results['objective'])
best_adv_thresh = threshs[np.argmin(objectives)]
logger.info("Evaluating Adversarial model on best threshold.")
with torch.no_grad():
labels = (actor(X_valid)[:, 0] > best_adv_thresh).reshape(-1, 1).numpy()
results_valid['adversarial'] = get_valid_objective(labels)
with torch.no_grad():
labels = (actor(X_test)[:, 0] > best_adv_thresh).reshape(-1, 1).numpy()
results_test['adversarial'] = get_test_objective(labels)
# Save Results
logger.info(f"Validation Results: {results_valid}")
logger.info(f"Saving validation results to {config['experiment_name']}_valid_output.json")
with open(f"results/{config['experiment_name']}_valid_output.json", "w") as fh:
json.dump(results_valid, fh)
logger.info(f"Test Results: {results_test}")
logger.info(f"Saving validation results to {config['experiment_name']}_test_output.json")
with open(f"results/{config['experiment_name']}_test_output.json", "w") as fh:
json.dump(results_test, fh)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("config", help="Path to configuration yaml file.")
args = parser.parse_args()
with open(args.config, 'r') as fh:
config = yaml.load(fh, Loader=yaml.FullLoader)
main(config)