-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcollapseSmallEdges.m
150 lines (135 loc) · 4.18 KB
/
collapseSmallEdges.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
function dataOut = collapseSmallEdges(dataIn, epsilon)
v = dataIn.Node;
e = dataIn.Elem;
B = dataIn.NodeB;
U = dataIn.NodeU;
V = dataIn.NodeV;
dim = size(v, 2);
if dim == 3
EC = dataIn.Elem(dataIn.ElemC, :);
F = accumarray(EC(:), 1) > 0;
F = [F; false(numel(B) - numel(F), 1)];
W = dataIn.NodeW;
EC = dataIn.ElemC;
deg = accumarray([e(EC, 1); e(EC, 2)], 1);
deg = [deg; zeros(size(v, 1) - numel(deg), 1)];
% C = dataIn.NodeC;
C = deg > 0;
else
C = false(size(B));
F = C;
end
eLen = sqrt( sum( (v(e(:, 1), :) - v(e(:, 2), :)).^2, 2 ) );
% very slow implementation: removes the (one) smallest edge in every
% iteration
while min(eLen) < epsilon
[~, idx] = min(eLen);
pt = e(idx, :);
e(idx, :) = [];
if dim==3
EC(idx, :) = [];
end
% "Priority" of vertices to keep their input positions: First,
% feature points. Second, boundary points. Then, the rest.
% if one is a corner, and the other is not
if C(pt(1)) && ~C(pt(2))
v(pt(2), :) = v(pt(1), :);
U(pt(1)) = max(U(pt));
V(pt(1)) = max(V(pt));
B(pt(1)) = max(B(pt));
if dim == 3
C(pt(1)) = max(C(pt));
W(pt(1)) = max(W(pt));
end
e(e==pt(2)) = pt(1);
elseif C(pt(2)) && ~C(pt(1))
v(pt(1), :) = v(pt(2), :);
U(pt(2)) = max(U(pt));
V(pt(2)) = max(V(pt));
B(pt(2)) = max(B(pt));
if dim == 3
C(pt(2)) = max(C(pt));
W(pt(2)) = max(W(pt));
end
e(e==pt(1)) = pt(2);
% if one lies on a feature curve, and the other does not
elseif F(pt(1)) && ~F(pt(2))
v(pt(2), :) = v(pt(1), :);
U(pt(1)) = max(U(pt));
V(pt(1)) = max(V(pt));
B(pt(1)) = max(B(pt));
if dim == 3
C(pt(1)) = max(C(pt));
W(pt(1)) = max(W(pt));
end
e(e==pt(2)) = pt(1);
elseif F(pt(2)) && ~F(pt(1))
v(pt(1), :) = v(pt(2), :);
U(pt(2)) = max(U(pt));
V(pt(2)) = max(V(pt));
B(pt(2)) = max(B(pt));
if dim == 3
C(pt(2)) = max(C(pt));
W(pt(2)) = max(W(pt));
end
e(e==pt(1)) = pt(2);
% if one is a boundary point and the other is not
elseif B(pt(1)) && ~B(pt(2))
v(pt(2), :) = v(pt(1), :);
U(pt(1)) = max(U(pt));
V(pt(1)) = max(V(pt));
B(pt(1)) = max(B(pt));
if dim == 3
C(pt(1)) = max(C(pt));
W(pt(1)) = max(W(pt));
end
e(e==pt(2)) = pt(1);
elseif B(pt(2)) && ~B(pt(1))
v(pt(1), :) = v(pt(2), :);
U(pt(2)) = max(U(pt));
V(pt(2)) = max(V(pt));
B(pt(2)) = max(B(pt));
if dim == 3
C(pt(2)) = max(C(pt));
W(pt(2)) = max(W(pt));
end
e(e==pt(1)) = pt(2);
% if both points have the same "priority", take the average
% position
else
v(pt(1), :) = (v(pt(1), :) + v(pt(2), :))/2;
U(pt(2)) = max(U(pt));
V(pt(2)) = max(V(pt));
B(pt(2)) = max(B(pt));
if dim == 3
C(pt(2)) = max(C(pt));
W(pt(2)) = max(W(pt));
end
e(e==pt(1)) = pt(2);
end
eLen = sqrt( sum( (v(e(:, 1), :) - v(e(:, 2), :)).^2, 2 ) );
end
[v, I, J] = remove_unreferenced(v, e);
e = I(e);
B = B(J);
U = U(J);
V = V(J);
if dim==3
C = C(J);
W = W(J);
end
e = sort(e, 2);
[e, I] = unique(e, 'rows');
dataOut = dataIn;
dataOut.Node = v;
dataOut.Elem = e;
dataOut.NodeB = B;
dataOut.NodeU = U;
dataOut.NodeV = V;
if dim==3
EC = EC(I);
dataOut.ElemC = EC;
dataOut.NodeC = C;
dataOut.NodeW = W;
end
end