You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository was archived by the owner on Sep 25, 2023. It is now read-only.
Add option for smaller dataset in IO notebook (#473)
Adds the option to use a smaller ~300MB SigMF dataset for the IO examples, as well as code to automatically download / extract the dataset of choice.
Note that there are some failures in the notebook - raised #474 to cover this.
Closes#472
Authors:
- Charles Blackmon-Luca (https://github.com/charlesbluca)
Approvers:
- Adam Thompson (https://github.com/awthomp)
URL: #473
"Downloading https://repository.library.northeastern.edu/downloads/neu:m044q523j?datastream_id=content to ../data/KRI-16IQImbalances-DemodulatedData.zip\n"
65
+
]
66
+
},
67
+
{
68
+
"name": "stderr",
69
+
"output_type": "stream",
70
+
"text": [
71
+
" % Total % Received % Xferd Average Speed Time Time Time Current\n",
"For our purposes here, [SigMF](https://github.com/gnuradio/SigMF) data is treated as a JSON header and processed on CPU, while the *binary* payload file is mmaped to GPU and cuSignal uses a CUDA kernel to parse the file. While we've focused on SigMF here, you can use the underlying `cusignal.read_bin` and `cusignal.parse_bin` (and corresponding write functions) for your own datasets."
155
+
"For our purposes here, [SigMF](https://github.com/gnuradio/SigMF) data is treated as a JSON header and processed on CPU, while the *binary* payload file is mapped to GPU and cuSignal uses a CUDA kernel to parse the file. While we've focused on SigMF here, you can use the underlying `cusignal.read_bin` and `cusignal.parse_bin` (and corresponding write functions) for your own datasets."
58
156
]
59
157
},
60
158
{
@@ -66,7 +164,7 @@
66
164
},
67
165
{
68
166
"cell_type": "code",
69
-
"execution_count": 3,
167
+
"execution_count": 4,
70
168
"metadata": {},
71
169
"outputs": [],
72
170
"source": [
@@ -79,14 +177,14 @@
79
177
},
80
178
{
81
179
"cell_type": "code",
82
-
"execution_count": 4,
180
+
"execution_count": 5,
83
181
"metadata": {},
84
182
"outputs": [
85
183
{
86
184
"name": "stdout",
87
185
"output_type": "stream",
88
186
"text": [
89
-
"128 ms ± 147 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
187
+
"13.5 ms ± 12.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
90
188
]
91
189
}
92
190
],
@@ -104,14 +202,14 @@
104
202
},
105
203
{
106
204
"cell_type": "code",
107
-
"execution_count": 5,
205
+
"execution_count": 6,
108
206
"metadata": {},
109
207
"outputs": [
110
208
{
111
209
"name": "stdout",
112
210
"output_type": "stream",
113
211
"text": [
114
-
"188 ms ± 341 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
212
+
"15.5 ms ± 430 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
115
213
]
116
214
}
117
215
],
@@ -137,14 +235,14 @@
137
235
},
138
236
{
139
237
"cell_type": "code",
140
-
"execution_count": 6,
238
+
"execution_count": 7,
141
239
"metadata": {},
142
240
"outputs": [
143
241
{
144
242
"name": "stdout",
145
243
"output_type": "stream",
146
244
"text": [
147
-
"82.2 ms ± 172 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
245
+
"7.38 ms ± 28.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
148
246
]
149
247
}
150
248
],
@@ -170,7 +268,7 @@
170
268
},
171
269
{
172
270
"cell_type": "code",
173
-
"execution_count": 7,
271
+
"execution_count": 8,
174
272
"metadata": {},
175
273
"outputs": [],
176
274
"source": [
@@ -180,14 +278,14 @@
180
278
},
181
279
{
182
280
"cell_type": "code",
183
-
"execution_count": 8,
281
+
"execution_count": 9,
184
282
"metadata": {},
185
283
"outputs": [
186
284
{
187
285
"name": "stdout",
188
286
"output_type": "stream",
189
287
"text": [
190
-
"82.2 ms ± 50.1 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
288
+
"7.37 ms ± 32.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
191
289
]
192
290
}
193
291
],
@@ -213,7 +311,7 @@
213
311
},
214
312
{
215
313
"cell_type": "code",
216
-
"execution_count": 9,
314
+
"execution_count": 10,
217
315
"metadata": {},
218
316
"outputs": [],
219
317
"source": [
@@ -223,14 +321,14 @@
223
321
},
224
322
{
225
323
"cell_type": "code",
226
-
"execution_count": 10,
324
+
"execution_count": 11,
227
325
"metadata": {},
228
326
"outputs": [
229
327
{
230
328
"name": "stdout",
231
329
"output_type": "stream",
232
330
"text": [
233
-
"82.8 ms ± 866 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
331
+
"7.39 ms ± 22.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
234
332
]
235
333
}
236
334
],
@@ -249,7 +347,7 @@
249
347
},
250
348
{
251
349
"cell_type": "code",
252
-
"execution_count": 11,
350
+
"execution_count": 12,
253
351
"metadata": {},
254
352
"outputs": [],
255
353
"source": [
@@ -271,14 +369,14 @@
271
369
},
272
370
{
273
371
"cell_type": "code",
274
-
"execution_count": 12,
372
+
"execution_count": 13,
275
373
"metadata": {},
276
374
"outputs": [
277
375
{
278
376
"name": "stdout",
279
377
"output_type": "stream",
280
378
"text": [
281
-
"338 ms ± 837 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
379
+
"41.8 ms ± 576 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
282
380
]
283
381
}
284
382
],
@@ -297,14 +395,14 @@
297
395
},
298
396
{
299
397
"cell_type": "code",
300
-
"execution_count": 13,
398
+
"execution_count": 14,
301
399
"metadata": {},
302
400
"outputs": [
303
401
{
304
402
"name": "stdout",
305
403
"output_type": "stream",
306
404
"text": [
307
-
"341 ms ± 830 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
405
+
"43 ms ± 1.4 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
308
406
]
309
407
}
310
408
],
@@ -323,7 +421,7 @@
323
421
},
324
422
{
325
423
"cell_type": "code",
326
-
"execution_count": 14,
424
+
"execution_count": 15,
327
425
"metadata": {},
328
426
"outputs": [],
329
427
"source": [
@@ -333,14 +431,14 @@
333
431
},
334
432
{
335
433
"cell_type": "code",
336
-
"execution_count": 15,
434
+
"execution_count": 16,
337
435
"metadata": {},
338
436
"outputs": [
339
437
{
340
438
"name": "stdout",
341
439
"output_type": "stream",
342
440
"text": [
343
-
"253 ms ± 1.22 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
441
+
"36 ms ± 2.24 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
344
442
]
345
443
}
346
444
],
@@ -359,7 +457,7 @@
359
457
},
360
458
{
361
459
"cell_type": "code",
362
-
"execution_count": 16,
460
+
"execution_count": 17,
363
461
"metadata": {},
364
462
"outputs": [],
365
463
"source": [
@@ -369,14 +467,14 @@
369
467
},
370
468
{
371
469
"cell_type": "code",
372
-
"execution_count": 17,
470
+
"execution_count": 18,
373
471
"metadata": {},
374
472
"outputs": [
375
473
{
376
474
"name": "stdout",
377
475
"output_type": "stream",
378
476
"text": [
379
-
"253 ms ± 950 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
477
+
"36.3 ms ± 419 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
0 commit comments