forked from jcabaker/land_atm_coupling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtwo_legged_metric.py
627 lines (540 loc) · 25.2 KB
/
two_legged_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
;;#############################################################################
;;
;; two_legged_metric.py
;; Author: Jess Baker ([email protected])
;; LAPSE project, part of CSSP Brazil
;; University of Leeds, UK
;;
;;#############################################################################
;;
;; Description
;; This script is the diagnostic and plotting script for the global
;; two-legged metric. The two-legged coupling metric is used to trace energy
;; or moisture feedback pathways from the surface to the atmosphere in a
;; mechanistic way (Dirmeyer, 2011, Dirmeyer et al., 2014, Guo et al.,
;; 2006). The metric is based on having a physical understanding of the
;; factors that control interactions between the land and the atmosphere,
;; and can be used to identify areas where land-atmosphere coupling is
;; particularly strong. The feedback pathway is broken down into two stages:
;; the surface leg, which measures the strength of regression between a
;; surface state variable (S) and a surface flux variable (F), and the
;; atmospheric leg, which measures the regression relationship between the
;; surface flux variable (F) and an atmospheric variable (A). Regression
;; relationships are calculated using monthly anomalies from the local (grid
;; cell level) climatological seasonal cycle for each variable (S', F' and
;; A'). The product of these represents the total land-atmosphere feedback
;; pathway:
;; dF'/dS'×dA'/dF'=dA'/dS'
;;
;; Finally, dF'/dS', dA'/dF', and dA'/dS' are each multiplied by the
;; standard deviation of the term in the denominator (σ(S'), σ(F') and
;; σ(S')). This is to account for the fact that, in some areas,
;; relationships may be strong while interannual variability is low, and
;; thus the actual response of the atmosphere to the surface is minimal.
;; The metric includes an option to perform the analysis over the wet and
;; dry seasons separately, or to use data from all months. Further options
;; allow the user to choose the output variable (regression slope or
;; correlation coefficient), and to automatically generate plots of the
;; results.
;;
;; Requirements
;; Takes three variables relating to the land surface, land-atmosphere flux
;; and the atmosphere. Data should be formatted as Iris cubes, constrained
;; to the same time period.
;;
;; References
;; Dirmeyer, P. A. 2011. The terrestrial segment of soil moisture–climate
;; coupling. Geophysical Research Letters, 38.
;;
;; Dirmeyer, P. A. et al. 2014. Intensified land surface control on boundary
;; layer growth in a changing climate. Geophysical Research Letters, 41,
;; 1290-1294.
;;
;;#############################################################################
"""
# Required Python packages
import numpy as np
import iris.coord_categorisation
import iris
import matplotlib.pyplot as plt
import copy
import os
from datetime import datetime
from mpl_toolkits import basemap
from mpl_toolkits.basemap import maskoceans
from scipy.stats import linregress as ols
from scipy.stats import pearsonr
from scipy.stats import spearmanr
def main(surf_cube, flux_cube, atm_cube, anom=True, ols_out='slope',
surf_scale=None, flux_scale=None, atm_scale=None,
wet_dry=False, weighting=True,
pre_data_path=('/nfs/a68/gyjcab/datasets/lapse_data_harmonised/'
'Jan_2018/Final/1.0deg/'
'pr_trmm_3b43_mon_1.0deg_1998_2016.nc'),
constraint_yrs=None,
plotting=False,
plotting_args={'name': 'Observations',
'lat_lims': [-60, 30],
'lon_lims': [-120, 180],
'levels': [(-10, 10, 11),
(-15, 15, 11),
(-10, 10, 11)]}, p_thresh=0.05,
corr_method='pearson'):
"""
Program for calculating two legged metric with surface, flux and
atmospheric variables.
Takes Iris cubes as input.
Arguments:
surf_cube = Iris cube of surface state variable.
flux_cube = Iris cube of flux variable.
atm_cube = Iris cube of atmospheric state variable.
anom = Boolean. Calculate metrics using anomalies from climatological
seasonal cycle (True) or interannual monthly data (False).
ols_out = output from linear regression. Accepts 'slope' or 'r'.
surf_scale = scale factor for surface variable.
flux_scale = scale factor for flux variable.
atm_scale = scale factor for atmospheric variable.
wet_dry = Boolean. Calculate metric using data from 6 wettest and 6
dryest months in each pixel (True) or using data from all
months (False).
weighting = Boolean. Weight output arrays by standard deviation of
denominator (requirement of two-legged metric). Option to
remove weighting may be preferred when calculating
correlation coefficents.
pre_data_path = If wet_dry is True, path for precipitation data used to
identify wet and dry months.
constraint_yrs = Length 2 array with start and end years of constraint.
plotting = Boolean. Plot output of metric. If False returns output of
metric as arrays only.
plotting_args = dictionary of plotting arguments, including name of
data being plotted (observations or name of model),
figure size, limits for output map, and colorbar
levels.
p_thresh = p threshold for calculating significance of correlations.
corr_method = correlation method. Can be 'pearson' (assumes data are
normally distributed) or 'spearman' (no assumption
about the distribution).
"""
# Apply scaling factors
if surf_scale is not None:
surf_cube.data = surf_cube.data * surf_scale
if flux_scale is not None:
flux_cube.data = flux_cube.data * flux_scale
if atm_scale is not None:
atm_cube.data = atm_cube.data * atm_scale
# Check if lats are ascending, if not then reverse
surf_cube = flip_lats(surf_cube)
flux_cube = flip_lats(flux_cube)
atm_cube = flip_lats(atm_cube)
# Reorder data from -180 to +180 degrees
temp_lon = surf_cube.coord('longitude').points
if temp_lon.max() > 180:
surf_cube = minus180_to_plus180(surf_cube)
flux_cube = minus180_to_plus180(flux_cube)
atm_cube = minus180_to_plus180(atm_cube)
# Calculate anomalies versus climatological seasonal cycle
if anom is True:
surf_cube = monthly_anom_cube(surf_cube)
flux_cube = monthly_anom_cube(flux_cube)
atm_cube = monthly_anom_cube(atm_cube)
# Extract data from input cubes
surf_var = surf_cube.data
lat = surf_cube.coord('latitude').points
lon = surf_cube.coord('longitude').points
flux_var = flux_cube.data
atm_var = atm_cube.data
# Constrain data to required years
if constraint_yrs is not None:
constraint = iris.Constraint(time=lambda cell:
constraint_yrs[0] <=
cell.point.year <=
constraint_yrs[1])
else:
constraint = None
# Calculate for wet and dry months separately
if wet_dry is True:
# For each pixel identify wettest 6 months
# Read in precipitation data
try:
data_path = (pre_data_path)
pre_cube = iris.load_cube(data_path, constraint=constraint)
except NameError:
print('Need to specify filepath for precipitation data to '
'calculate wet/dry months')
assert False
# Regrid precipitation data to resolution of input array
target_cube = surf_cube
scheme = iris.analysis.AreaWeighted(mdtol=0.5)
pre_cube = pre_cube.regrid(target_cube, scheme)
# Calculate seasonal cycle for each pixel
iris.coord_categorisation.add_month(pre_cube, 'time', name='month')
pre_mn = pre_cube.aggregated_by(['month'], iris.analysis.MEAN)
# For all pixels get indices of wet months
nyear = int(surf_var.shape[0]/12)
wet_bool = np.zeros((nyear*12, pre_cube.shape[-2], pre_cube.shape[-1]))
for ny in range(pre_mn.shape[-2]):
for nx in range(pre_mn.shape[-1]):
cycle = pre_mn.data[:, ny, nx]
if np.nanmax(cycle) > 0:
wet_idx = sorted(range(12), key=lambda x: cycle[x])[-6:]
for yr in range(nyear):
for w in wet_idx:
wet_bool[w + 12*yr, ny, nx] = 1
else:
wet_bool[:, ny, nx] = np.nan
# Define dictionaries to hold output
wet_arrays = {'surf_leg': None, 'atm_leg': None, 'product': None}
dry_arrays = {'surf_leg': None, 'atm_leg': None, 'product': None}
data_dict = {'wet': wet_arrays, 'dry': dry_arrays}
# Calculate metric for wet and dry seasons
for season in ['wet', 'dry']:
print(season)
print(np.nanmin(surf_var), np.nanmax(surf_var))
two_legged_output = calculating_legs(surf_var,
flux_var,
atm_var,
ols_out=ols_out,
wet_bool=wet_bool,
season=season,
weighting=weighting,
p_thresh=p_thresh,
corr_method=corr_method)
surf_leg = two_legged_output[0]
surf_pvals = two_legged_output[1]
atm_leg = two_legged_output[2]
atm_pvals = two_legged_output[3]
product = two_legged_output[4]
product_pvals = two_legged_output[5]
data_dict[season]['surf_leg'] = surf_leg
data_dict[season]['surf_pvals'] = surf_pvals
data_dict[season]['atm_leg'] = atm_leg
data_dict[season]['atm_pvals'] = atm_pvals
data_dict[season]['product'] = product
data_dict[season]['product_pvals'] = product_pvals
# Call plotting routine
if plotting is True:
# Define plotting variables
name = plotting_args['name'] + ': ' + season + ' season'
surf_name = surf_cube.long_name
flux_name = flux_cube.long_name
atm_name = atm_cube.long_name
if ols_out == 'slope':
if surf_scale is None:
surf_scale = ''
else:
surf_scale = str(' ({:.0e}'.format(surf_scale)) + ' '
if flux_scale is None:
flux_scale = ''
else:
flux_scale = str(' ({:.0e}'.format(flux_scale)) + ' '
if atm_scale is None:
atm_scale = ''
else:
atm_scale = str(' ({:.0e}'.format(atm_scale)) + ' '
surf_leg_unit = (flux_scale + str(flux_cube.units) + '/' +
surf_scale + str(surf_cube.units))
atm_leg_unit = (atm_scale + str(atm_cube.units) + '/' +
flux_scale + str(flux_cube.units))
product_unit = (atm_scale + str(atm_cube.units) + '/' +
surf_scale + str(surf_cube.units))
elif ols_out == 'r':
surf_leg_unit = ' '
atm_leg_unit = ' '
product_unit = ' '
lat_lims = plotting_args['lat_lims']
lon_lims = plotting_args['lon_lims']
levels = plotting_args['levels']
plot_two_legged(name,
surf_name, surf_leg, surf_leg_unit,
flux_name, atm_leg, atm_leg_unit,
atm_name, product, product_unit,
lat, lon, lat_lims, lon_lims,
levs=levels)
return(data_dict, wet_bool, lat, lon)
# Calculate metric using data from all months
else:
two_legged_output = calculating_legs(surf_var,
flux_var,
atm_var,
ols_out=ols_out,
weighting=weighting,
p_thresh=p_thresh,
corr_method=corr_method)
surf_leg = two_legged_output[0]
surf_pvals = two_legged_output[1]
atm_leg = two_legged_output[2]
atm_pvals = two_legged_output[3]
product = two_legged_output[4]
product_pvals = two_legged_output[5]
# Call plotting routine
if plotting is True:
# Define plotting variables
name = plotting_args['name']
surf_name = surf_cube.long_name
if surf_name is None:
surf_name = surf_cube.standard_name
print(surf_name)
flux_name = flux_cube.long_name
if flux_name is None:
flux_name = flux_cube.standard_name
print(flux_name)
atm_name = atm_cube.long_name
if atm_name is None:
atm_name = atm_cube.standard_name
print(atm_name)
if ols_out == 'slope':
if surf_scale is None:
surf_scale = ''
else:
surf_scale = str(' ({:.0e}'.format(surf_scale)) + ' '
if flux_scale is None:
flux_scale = ''
else:
flux_scale = str(' ({:.0e}'.format(flux_scale)) + ' '
if atm_scale is None:
atm_scale = ''
else:
atm_scale = str(' ({:.0e}'.format(atm_scale)) + ' '
surf_leg_unit = (flux_scale + str(flux_cube.units) + '/' +
surf_scale + str(surf_cube.units))
atm_leg_unit = (atm_scale + str(atm_cube.units) + '/' +
flux_scale + str(flux_cube.units))
product_unit = (atm_scale + str(atm_cube.units) + '/' +
surf_scale + str(surf_cube.units))
elif ols_out == 'r':
surf_leg_unit = ' '
atm_leg_unit = ' '
product_unit = ' '
lat_lims = plotting_args['lat_lims']
lon_lims = plotting_args['lon_lims']
levels = plotting_args['levels']
plot_two_legged(name,
surf_name, surf_leg, surf_leg_unit,
flux_name, atm_leg, atm_leg_unit,
atm_name, product, product_unit,
lat, lon, lat_lims, lon_lims,
levs=levels)
return(surf_leg, surf_pvals, atm_leg, atm_pvals,
product, product_pvals, lat, lon)
def calculating_legs(surf_var, flux_var, atm_var, ols_out='slope',
wet_bool=None, season=None, weighting=True,
p_thresh=0.05, corr_method='pearson'):
len_lat = surf_var.shape[-2]
len_lon = surf_var.shape[-1]
# Define arrays to store data
surf_leg = np.empty((len_lat, len_lon))
surf_leg[:] = np.nan
surf_pvals = np.empty((len_lat, len_lon))
surf_pvals[:] = np.nan
atm_leg = np.empty((len_lat, len_lon))
atm_leg[:] = np.nan
atm_pvals = np.empty((len_lat, len_lon))
atm_pvals[:] = np.nan
product = np.empty((len_lat, len_lon))
product[:] = np.nan
product_pvals = np.empty((len_lat, len_lon))
product_pvals[:] = np.nan
for ny in range(surf_var.shape[-2]):
for nx in range(surf_var.shape[-1]):
# Extract data from one grid cell
if wet_bool is not None:
if season == 'wet':
i, = np.where(wet_bool[:, ny, nx] == 1)
surf_temp = surf_var[i, ny, nx]
flux_temp = flux_var[i, ny, nx]
atm_temp = atm_var[i, ny, nx]
elif season == 'dry':
i, = np.where((wet_bool[:, ny, nx]) == 0)
surf_temp = surf_var[i, ny, nx]
flux_temp = flux_var[i, ny, nx]
atm_temp = atm_var[i, ny, nx]
else:
surf_temp = surf_var[:, ny, nx]
flux_temp = flux_var[:, ny, nx]
atm_temp = atm_var[:, ny, nx]
# First calculate surface leg of metric
# 1. Find which months both surface and flux variables have data
mask1 = ~np.isnan(surf_temp) & ~np.isnan(flux_temp)
# Provided at least 10 months overlap proceed with calc
if len(surf_temp[mask1]) > 10:
# If significant then save value otherwise -999
if ols_out == 'slope':
slope, intercept, r, p, std_err = ols(surf_temp[mask1],
flux_temp[mask1])
surf_leg[ny, nx] = slope
surf_pvals[ny, nx] = p
elif ols_out == 'r':
if corr_method == 'pearson':
r, p = pearsonr(surf_temp[mask1], flux_temp[mask1])
if corr_method == 'spearman':
r, p = spearmanr(surf_temp[mask1], flux_temp[mask1])
surf_leg[ny, nx] = r
surf_pvals[ny, nx] = p
# As above for atmospheric leg
# Find which months both flux and atm variables have data
mask2 = ~np.isnan(flux_temp) & ~np.isnan(atm_temp)
if len(flux_temp[mask2]) > 10:
if ols_out == 'slope':
slope, intercept, r, p, std_err = ols(flux_temp[mask2],
atm_temp[mask2])
atm_leg[ny, nx] = slope
atm_pvals[ny, nx] = p
elif ols_out == 'r':
if corr_method == 'pearson':
r, p = pearsonr(flux_temp[mask2], atm_temp[mask2])
if corr_method == 'spearman':
r, p = spearmanr(flux_temp[mask2], atm_temp[mask2])
atm_leg[ny, nx] = r
atm_pvals[ny, nx] = p
# Calculate response of atm var to surface var
product[ny, nx] = surf_leg[ny, nx] * atm_leg[ny, nx]
product_pvals[ny, nx] = max([surf_pvals[ny, nx],
atm_pvals[ny, nx]])
# Weight by variability of denominator (see Dirmeyer et al., 2014)
# this emphasises places where actual impact is large
if weighting is True:
# if (surf_pvals[ny, nx] < p_thresh):
surf_leg[ny, nx] = surf_leg[ny, nx] *\
np.std(surf_temp[mask1])
# if (atm_pvals[ny, nx] < p_thresh):
atm_leg[ny, nx] = atm_leg[ny, nx] *\
np.std(flux_temp[mask2])
# if (product_pvals[ny, nx] < p_thresh):
product[ny, nx] = product[ny, nx] *\
np.std(surf_temp[mask1])
print(np.nanmin(surf_leg), np.nanmax(surf_leg))
print(np.nanmin(atm_leg), np.nanmax(atm_leg))
print(np.nanmin(product), np.nanmax(product))
# assert False
return(surf_leg, surf_pvals, atm_leg, atm_pvals, product, product_pvals)
def minus180_to_plus180(var_cube):
"""
Function to reorder cube data from -180 to +180.
"""
# Reorganise data
var = var_cube.data
lat = var_cube.coord('latitude').points
if len(lat.shape) > 1:
lat = lat[:, 0]
lon = var_cube.coord('longitude').points
if len(lon.shape) > 1:
lon = lon[0, :]
half = int(var.shape[-1]/2)
temp1 = var[:, :, 0:half]
temp2 = var[:, :, half:]
new_var = np.concatenate((temp2, temp1), axis=2)
new_lon = np.arange(-180, 180, (abs(lon[1]-lon[0])))
# Save re-ordered data as new cube
new_cube = var_cube.copy()
new_cube.data = new_var
new_cube.coord('longitude').points = new_lon
return(new_cube)
def plot_two_legged(name,
surf_var_name, surf_leg, surf_leg_unit,
flux_var_name, atm_leg, atm_leg_unit,
atm_var_name, product, product_unit,
lat, lon, lat_lims, lon_lims, figsize=(10,8),
levs=[(-10, 10, 11),
(-15, 15, 11),
(-10, 10, 11)]):
# Make maps of surface and atm legs of metric, plus product
fig = plt.figure(figsize=figsize)
plt.subplots_adjust(wspace=0., hspace=0.2)
subplots = [311, 312, 313]
# Corners of subset map
lat1 = lat_lims[0]
lat2 = lat_lims[1]
lon1 = lon_lims[0]
lon2 = lon_lims[1]
datasets = [surf_leg, atm_leg, product]
for i in range(3):
iplot = subplots[i]
ax = fig.add_subplot(iplot)
data = datasets[i]
levels = np.linspace(*levs[i % 3])
cmap = copy.copy(plt.cm.RdBu_r)
m = basemap.Basemap(projection='mill',
llcrnrlat=lat1, urcrnrlat=lat2,
llcrnrlon=lon1, urcrnrlon=lon2,
lat_ts=20, resolution='c')
lons1, lats1 = np.meshgrid(lon, lat)
x, y = m(lons1, lats1)
m.drawcoastlines()
ds_new = maskoceans(lons1, lats1, data)
cs = m.contourf(x, y, ds_new, levels=levels, cmap=cmap, extend='both')
cb = plt.colorbar(cs, orientation='vertical', pad=0.05, shrink=1)
m.contourf(x, y, ds_new, levels=[-1000, -998], colors='darkgrey')
if i == 0:
unit = surf_leg_unit
pad = 0.05
if i == 1:
unit = atm_leg_unit
pad = 5.2
if i == 2:
unit = product_unit
pad = 0.05
cb.set_label(unit, labelpad=pad, fontsize=10)
if i % 3 == 0:
title = ('Surface leg: relationship between ' + surf_var_name +
' and ' + flux_var_name)
ax.set_title(title, fontsize=10)
if i % 3 == 1:
title = ('Atm leg: relationship between ' + flux_var_name +
' and ' + atm_var_name)
ax.set_title(title, fontsize=10)
if i % 3 == 2:
title = ('Total feedback path: relationship between ' +
surf_var_name + ' and ' + atm_var_name)
ax.set_title(title, fontsize=10)
plt.suptitle(name, fontsize=14, y=1.05)
plt.tight_layout()
path = str(os.getcwd()) + '/'
print(path)
today = datetime.today()
date = today.strftime("_%d.%m.%Y")
fname = 'two_legged_' + name + '_' + surf_var_name + '-' + \
flux_var_name + '-' + atm_var_name + date + '.png'
plt.savefig(path+fname, dpi=300, bbox_inches='tight')
def monthly_anom_cube(cube, fill=None):
# Extract data array and identify nans
ds = np.array(cube.data)
if fill is not None:
ds[np.where(ds == fill)] = np.nan
# Find where original dataset is masked
mask = np.where(ds >= 1e20)
# Group data by month and calculate anomaly from seaonal climatology
if len(ds.shape) == 3:
# Check if analysis on seasonal cube
try:
nmonth = len(cube.coord('season').points[0])
except:
nmonth = 12
ds = ds.reshape(-1, nmonth, cube.shape[-2], cube.shape[-1])
anomalies = np.nan * np.zeros((ds.shape))
for mn in range(nmonth):
anomalies[:, mn, :, :] = ds[:, mn, :, :] - \
np.nanmean(ds[:, mn, :, :], axis=0)
cube2 = cube.copy()
cube2.data = anomalies.reshape((-1, cube.shape[-2], cube.shape[-1]))
cube2.data[mask] = np.nan
# Remove null values
cube2.data[cube2.data >= 1e20] = np.nan
cube2.data[cube2.data <= -1e20] = np.nan
return(cube2)
def flip_lats(data_cube):
lats = data_cube.coord('latitude').points
# Check if lats need flipping
if lats[0] < lats[-1]:
print('Lats already ascending')
return(data_cube)
else:
new_cube = data_cube.copy()
new_lats = lats[::-1]
new_data = data_cube.data[:, ::-1, :]
new_cube.data = new_data
new_cube.coord('latitude').points = new_lats
print('Lats flipped')
return(new_cube)