Skip to content

Commit b412312

Browse files
authored
Merge branch 'main' into bert_ft
2 parents ad3c27f + a706a01 commit b412312

24 files changed

+1986
-4273
lines changed

QEfficient/transformers/cache_utils.py

+26-1
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
from typing import Any, Dict, Optional, Tuple
1010

1111
import torch
12-
from transformers.cache_utils import DynamicCache
12+
from transformers.cache_utils import DynamicCache, EncoderDecoderCache
1313

1414
from QEfficient.customop import (
1515
CtxGatherFunc,
@@ -181,3 +181,28 @@ def update3D(
181181
v_out = torch.where(invalid_mask.unsqueeze(-1), torch.tensor(0.0, dtype=torch.float32), v_out)
182182

183183
return k_out, v_out
184+
185+
186+
class QEffEncoderDecoderCache(EncoderDecoderCache):
187+
"""
188+
Updated the `EncoderDecoderCache` to use the `QEffDynamicCache` for both self-attention and cross-attention caches.
189+
"""
190+
191+
@classmethod
192+
def from_legacy_cache(
193+
cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
194+
) -> "EncoderDecoderCache":
195+
"""Converts a cache in the legacy cache format into an equivalent `EncoderDecoderCache`."""
196+
cache = cls(
197+
self_attention_cache=QEffDynamicCache(),
198+
cross_attention_cache=QEffDynamicCache(),
199+
)
200+
if past_key_values is not None:
201+
for layer_idx in range(len(past_key_values)):
202+
key_states, value_states = past_key_values[layer_idx][:2]
203+
cache.self_attention_cache.update(key_states, value_states, layer_idx)
204+
if len(past_key_values[layer_idx]) > 2:
205+
key_states, value_states = past_key_values[layer_idx][2:]
206+
cache.cross_attention_cache.update(key_states, value_states, layer_idx)
207+
cache.is_updated[layer_idx] = True
208+
return cache

QEfficient/transformers/models/codegen/modeling_codegen.py

+15-66
Original file line numberDiff line numberDiff line change
@@ -10,20 +10,18 @@
1010
from typing import Optional, Tuple, Union
1111

1212
import torch
13-
import torch.utils.checkpoint
1413
from torch import nn
15-
from torch.nn import CrossEntropyLoss
16-
from transformers.cache_utils import Cache, DynamicCache
14+
from transformers.cache_utils import Cache
1715
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
1816
from transformers.models.codegen.modeling_codegen import (
1917
CodeGenAttention,
2018
CodeGenBlock,
2119
CodeGenForCausalLM,
2220
CodeGenModel,
2321
apply_rotary_pos_emb,
24-
logger,
2522
)
2623

24+
from QEfficient.transformers.cache_utils import QEffDynamicCache
2725
from QEfficient.transformers.modeling_attn_mask_utils import _create_causal_mask
2826

2927

@@ -133,7 +131,7 @@ def forward(
133131
"position_ids": position_ids,
134132
"batch_index": batch_index,
135133
}
136-
pkv = DynamicCache()
134+
pkv = QEffDynamicCache()
137135
pkv.key_cache.append(past_key_value[0])
138136
pkv.value_cache.append(past_key_value[1])
139137
key, value = pkv.update(key, value, 0, cache_kwargs)
@@ -261,14 +259,6 @@ def forward(
261259

262260
output_shape = input_shape + (hidden_states.size(-1),)
263261

264-
if self.gradient_checkpointing and self.training:
265-
if use_cache:
266-
logger.warning_once(
267-
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
268-
"`use_cache=False`..."
269-
)
270-
use_cache = False
271-
272262
if position_ids is None:
273263
position_ids = cache_position.unsqueeze(0)
274264

@@ -279,41 +269,17 @@ def forward(
279269
if output_hidden_states:
280270
all_hidden_states = all_hidden_states + (hidden_states,)
281271

282-
if self.gradient_checkpointing and self.training:
283-
outputs = self._gradient_checkpointing_func(
284-
block.__call__,
285-
hidden_states,
286-
None,
287-
attention_mask,
288-
position_ids,
289-
head_mask[i],
290-
use_cache,
291-
output_attentions,
292-
cache_position,
293-
)
294-
elif batch_index is not None:
295-
outputs = block(
296-
hidden_states=hidden_states,
297-
layer_past=layer_past,
298-
batch_index=batch_index,
299-
attention_mask=attention_mask,
300-
position_ids=position_ids,
301-
head_mask=head_mask[i],
302-
use_cache=use_cache,
303-
output_attentions=output_attentions,
304-
cache_position=cache_position,
305-
)
306-
else:
307-
outputs = block(
308-
hidden_states=hidden_states,
309-
layer_past=layer_past,
310-
attention_mask=attention_mask,
311-
position_ids=position_ids,
312-
head_mask=head_mask[i],
313-
use_cache=use_cache,
314-
output_attentions=output_attentions,
315-
cache_position=cache_position,
316-
)
272+
outputs = block(
273+
hidden_states=hidden_states,
274+
layer_past=layer_past,
275+
batch_index=batch_index,
276+
attention_mask=attention_mask,
277+
position_ids=position_ids,
278+
head_mask=head_mask[i],
279+
use_cache=use_cache,
280+
output_attentions=output_attentions,
281+
cache_position=cache_position,
282+
)
317283

318284
hidden_states = outputs[0]
319285
if use_cache is True:
@@ -398,25 +364,8 @@ def forward(
398364
hidden_states = transformer_outputs[0][torch.arange(position_ids.shape[0]).view(-1, 1), logit_index]
399365
lm_logits = self.lm_head(hidden_states)
400366

401-
loss = None
402-
if labels is not None:
403-
# move labels to correct device to enable model parallelism
404-
labels = labels.to(lm_logits.device)
405-
# Shift so that tokens < n predict n
406-
shift_logits = lm_logits[..., :-1, :].contiguous()
407-
shift_labels = labels[..., 1:].contiguous()
408-
# Flatten the tokens
409-
loss_fct = CrossEntropyLoss()
410-
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
411-
412-
loss = loss.to(hidden_states.dtype)
413-
414-
if not return_dict:
415-
output = (lm_logits,) + transformer_outputs[1:]
416-
return ((loss,) + output) if loss is not None else output
417-
418367
return CausalLMOutputWithPast(
419-
loss=loss,
368+
loss=None,
420369
logits=lm_logits,
421370
past_key_values=transformer_outputs.past_key_values,
422371
hidden_states=transformer_outputs.hidden_states,

0 commit comments

Comments
 (0)