|
50 | 50 | 'releases/download/efficientnet/')
|
51 | 51 |
|
52 | 52 | WEIGHTS_HASHES = {
|
53 |
| - 'efficientnet-b0': ('dd631faed10515e2cd08e3b5da0624b3' |
54 |
| - 'f50d523fe69b9b5fdf037365f9f907f0', |
55 |
| - 'e5649d29a9f2dd60380dd05d63389666' |
56 |
| - '1c36e1f9596e302a305f9ff1774c1bc8'), |
57 |
| - 'efficientnet-b1': ('3b88771863db84f3ddea6d722a818719' |
58 |
| - '04e0fa6288869a0adaa85059094974bb', |
59 |
| - '5b47361e17c7bd1d21e42add4456960c' |
60 |
| - '9312f71b57b9f6d548e85b7ad9243bdf'), |
61 |
| - 'efficientnet-b2': ('e78c89b8580d907238fd45f8ef200131' |
62 |
| - '95d198d16135fadc80650b2453f64f6c', |
63 |
| - 'ac3c2de4e43096d2979909dd9ec22119' |
64 |
| - 'c3a34a9fd3cbda9977c1d05f7ebcede9'), |
65 |
| - 'efficientnet-b3': ('99725ac825f7ddf5e47c05d333d9fb62' |
66 |
| - '3faf1640c0b0c7372f855804e1861508', |
67 |
| - 'e70d7ea35fa684f9046e6cc62783940b' |
68 |
| - 'd83d16edc238807fb75c73105d7ffbaa'), |
69 |
| - 'efficientnet-b4': ('242890effb990b11fdcc91fceb59cd74' |
70 |
| - '9388c6b712c96dfb597561d6dae3060a', |
71 |
| - 'eaa6455c773db0f2d4d097f7da771bb7' |
72 |
| - '25dd8c993ac6f4553b78e12565999fc1'), |
73 |
| - 'efficientnet-b5': ('c4cb66916633b7311688dbcf6ed5c35e' |
74 |
| - '45ce06594181066015c001103998dc67', |
75 |
| - '14161a20506013aa229abce8fd994b45' |
76 |
| - 'da76b3a29e1c011635376e191c2c2d54') |
| 53 | + 'efficientnet-b0': ('163292582f1c6eaca8e7dc7b51b01c61' |
| 54 | + '5b0dbc0039699b4dcd0b975cc21533dc', |
| 55 | + 'c1421ad80a9fc67c2cc4000f666aa507' |
| 56 | + '89ce39eedb4e06d531b0c593890ccff3'), |
| 57 | + 'efficientnet-b1': ('d0a71ddf51ef7a0ca425bab32b7fa7f1' |
| 58 | + '6043ee598ecee73fc674d9560c8f09b0', |
| 59 | + '75de265d03ac52fa74f2f510455ba64f' |
| 60 | + '9c7c5fd96dc923cd4bfefa3d680c4b68'), |
| 61 | + 'efficientnet-b2': ('bb5451507a6418a574534aa76a91b106' |
| 62 | + 'f6b605f3b5dde0b21055694319853086', |
| 63 | + '433b60584fafba1ea3de07443b74cfd3' |
| 64 | + '2ce004a012020b07ef69e22ba8669333'), |
| 65 | + 'efficientnet-b3': ('03f1fba367f070bd2545f081cfa7f3e7' |
| 66 | + '6f5e1aa3b6f4db700f00552901e75ab9', |
| 67 | + 'c5d42eb6cfae8567b418ad3845cfd63a' |
| 68 | + 'a48b87f1bd5df8658a49375a9f3135c7'), |
| 69 | + 'efficientnet-b4': ('98852de93f74d9833c8640474b2c698d' |
| 70 | + 'b45ec60690c75b3bacb1845e907bf94f', |
| 71 | + '7942c1407ff1feb34113995864970cd4' |
| 72 | + 'd9d91ea64877e8d9c38b6c1e0767c411'), |
| 73 | + 'efficientnet-b5': ('30172f1d45f9b8a41352d4219bf930ee' |
| 74 | + '3339025fd26ab314a817ba8918fefc7d', |
| 75 | + '9d197bc2bfe29165c10a2af8c2ebc675' |
| 76 | + '07f5d70456f09e584c71b822941b1952'), |
| 77 | + 'efficientnet-b6': ('f5270466747753485a082092ac9939ca' |
| 78 | + 'a546eb3f09edca6d6fff842cad938720', |
| 79 | + '1d0923bb038f2f8060faaf0a0449db4b' |
| 80 | + '96549a881747b7c7678724ac79f427ed'), |
| 81 | + 'efficientnet-b7': ('876a41319980638fa597acbbf956a82d' |
| 82 | + '10819531ff2dcb1a52277f10c7aefa1a', |
| 83 | + '60b56ff3a8daccc8d96edfd40b204c11' |
| 84 | + '3e51748da657afd58034d54d3cec2bac') |
77 | 85 | }
|
78 | 86 |
|
79 | 87 | BlockArgs = collections.namedtuple('BlockArgs', [
|
@@ -347,11 +355,6 @@ def EfficientNet(width_coefficient,
|
347 | 355 | raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
|
348 | 356 | ' as true, `classes` should be 1000')
|
349 | 357 |
|
350 |
| - if weights == 'imagenet' and (model_name not in WEIGHTS_HASHES): |
351 |
| - raise ValueError('Pre-trained weights are only available for ' |
352 |
| - 'EfficientNet-B0 to -B5, but you requested weights for ' + |
353 |
| - model_name + '.') |
354 |
| - |
355 | 358 | # Determine proper input shape
|
356 | 359 | input_shape = _obtain_input_shape(input_shape,
|
357 | 360 | default_size=default_resolution,
|
@@ -454,10 +457,10 @@ def EfficientNet(width_coefficient,
|
454 | 457 | # Load weights.
|
455 | 458 | if weights == 'imagenet':
|
456 | 459 | if include_top:
|
457 |
| - file_name = model_name + '_weights_tf_dim_ordering_tf_kernels.h5' |
| 460 | + file_name = model_name + '_weights_tf_dim_ordering_tf_kernels_autoaugment.h5' |
458 | 461 | file_hash = WEIGHTS_HASHES[model_name][0]
|
459 | 462 | else:
|
460 |
| - file_name = model_name + '_weights_tf_dim_ordering_tf_kernels_notop.h5' |
| 463 | + file_name = model_name + '_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5' |
461 | 464 | file_hash = WEIGHTS_HASHES[model_name][1]
|
462 | 465 | weights_path = keras_utils.get_file(file_name,
|
463 | 466 | BASE_WEIGHTS_PATH + file_name,
|
|
0 commit comments