Skip to content

Commit b94bb3d

Browse files
committed
Implementation for cityscapes in proto datasets
1 parent e13206d commit b94bb3d

File tree

2 files changed

+184
-0
lines changed

2 files changed

+184
-0
lines changed

torchvision/prototype/datasets/_builtin/__init__.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,7 @@
11
from .caltech import Caltech101, Caltech256
22
from .celeba import CelebA
33
from .cifar import Cifar10, Cifar100
4+
from .cityscapes import Cityscapes
45
from .clevr import CLEVR
56
from .coco import Coco
67
from .cub200 import CUB200
Lines changed: 183 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,183 @@
1+
import json
2+
from functools import partial
3+
from pathlib import Path
4+
from typing import Any, Dict, List, Optional, Tuple, BinaryIO
5+
6+
from torchdata.datapipes.iter import IterDataPipe, Mapper, Filter, Demultiplexer, IterKeyZipper, JsonParser
7+
from torchvision.prototype.datasets.utils import (
8+
Dataset,
9+
DatasetInfo,
10+
DatasetConfig,
11+
ManualDownloadResource,
12+
OnlineResource,
13+
)
14+
from torchvision.prototype.datasets.utils._internal import INFINITE_BUFFER_SIZE
15+
from torchvision.prototype.features import EncodedImage
16+
17+
18+
class CityscapesDatasetInfo(DatasetInfo):
19+
def __init__(self, *args: Any, **kwargs: Any):
20+
super().__init__(*args, **kwargs)
21+
self._configs = tuple(
22+
config
23+
for config in self._configs
24+
if not (
25+
(config.split == "test" and config.mode == "coarse")
26+
or (config.split == "train_extra" and config.mode == "fine")
27+
)
28+
)
29+
30+
def make_config(self, **options: Any) -> DatasetConfig:
31+
config = super().make_config(**options)
32+
if config.split == "test" and config.mode == "coarse":
33+
raise ValueError("`split='test'` is only available for `mode='fine'`")
34+
if config.split == "train_extra" and config.mode == "fine":
35+
raise ValueError("`split='train_extra'` is only available for `mode='coarse'`")
36+
37+
return config
38+
39+
40+
class CityscapesResource(ManualDownloadResource):
41+
def __init__(self, **kwargs: Any) -> None:
42+
super().__init__(
43+
"Register on https://www.cityscapes-dataset.com/login/ and follow the instructions there.", **kwargs
44+
)
45+
46+
47+
class Cityscapes(Dataset):
48+
def _make_info(self) -> DatasetInfo:
49+
name = "cityscapes"
50+
categories = None
51+
52+
return CityscapesDatasetInfo(
53+
name,
54+
categories=categories,
55+
homepage="http://www.cityscapes-dataset.com/",
56+
valid_options=dict(
57+
split=("train", "val", "test", "train_extra"),
58+
mode=("fine", "coarse"),
59+
# target_type=("instance", "semantic", "polygon", "color")
60+
),
61+
)
62+
63+
_FILES_CHECKSUMS = {
64+
"gtCoarse.zip": "3555e09349ed49127053d940eaa66a87a79a175662b329c1a26a58d47e602b5b",
65+
"gtFine_trainvaltest.zip": "40461a50097844f400fef147ecaf58b18fd99e14e4917fb7c3bf9c0d87d95884",
66+
"leftImg8bit_trainextra.zip": "e41cc14c0c06aad051d52042465d9b8c22bacf6e4c93bb98de273ed7177b7133",
67+
"leftImg8bit_trainvaltest.zip": "3ccff9ac1fa1d80a6a064407e589d747ed0657aac7dc495a4403ae1235a37525",
68+
}
69+
70+
def resources(self, config: DatasetConfig) -> List[OnlineResource]:
71+
if config.mode == "fine":
72+
resources = [
73+
CityscapesResource(
74+
file_name="leftImg8bit_trainvaltest.zip",
75+
sha256=self._FILES_CHECKSUMS["leftImg8bit_trainvaltest.zip"],
76+
),
77+
CityscapesResource(
78+
file_name="gtFine_trainvaltest.zip", sha256=self._FILES_CHECKSUMS["gtFine_trainvaltest.zip"]
79+
),
80+
]
81+
else:
82+
resources = [
83+
CityscapesResource(
84+
file_name="leftImg8bit_trainextra.zip", sha256=self._FILES_CHECKSUMS["leftImg8bit_trainextra.zip"]
85+
),
86+
CityscapesResource(file_name="gtCoarse.zip", sha256=self._FILES_CHECKSUMS["gtCoarse.zip"]),
87+
]
88+
return resources
89+
90+
def _filter_split_images(self, data, *, req_split: str):
91+
path = Path(data[0])
92+
split = path.parent.parts[-2]
93+
return split == req_split and ".png" == path.suffix
94+
95+
def _filter_classify_targets(self, data, *, req_split: str):
96+
path = Path(data[0])
97+
name = path.name
98+
split = path.parent.parts[-2]
99+
if split != req_split:
100+
return None
101+
for i, target_type in enumerate(["instance", "label", "polygon", "color"]):
102+
ext = ".json" if target_type == "polygon" else ".png"
103+
if ext in path.suffix and target_type in name:
104+
return i
105+
return None
106+
107+
def _prepare_sample(self, data):
108+
(img_path, img_data), target_data = data
109+
110+
color_path, color_data = target_data[1]
111+
target_data = target_data[0]
112+
polygon_path, polygon_data = target_data[1]
113+
target_data = target_data[0]
114+
label_path, label_data = target_data[1]
115+
target_data = target_data[0]
116+
instance_path, instance_data = target_data
117+
118+
return dict(
119+
image_path=img_path,
120+
image=EncodedImage.from_file(img_data),
121+
color_path=color_path,
122+
color=EncodedImage.from_file(color_data),
123+
polygon_path=polygon_path,
124+
polygon=polygon_data,
125+
segmentation_path=label_path,
126+
segmentation=EncodedImage.from_file(label_data),
127+
instances_path=color_path,
128+
instances=EncodedImage.from_file(instance_data),
129+
)
130+
131+
def _make_datapipe(
132+
self,
133+
resource_dps: List[IterDataPipe],
134+
*,
135+
config: DatasetConfig,
136+
) -> IterDataPipe[Dict[str, Any]]:
137+
archive_images, archive_targets = resource_dps
138+
139+
images_dp = Filter(archive_images, filter_fn=partial(self._filter_split_images, req_split=config.split))
140+
141+
targets_dps = Demultiplexer(
142+
archive_targets,
143+
4,
144+
classifier_fn=partial(self._filter_classify_targets, req_split=config.split),
145+
drop_none=True,
146+
buffer_size=INFINITE_BUFFER_SIZE,
147+
)
148+
149+
# targets_dps[2] is for json polygon, we have to decode them
150+
targets_dps[2] = JsonParser(targets_dps[2])
151+
152+
def img_key_fn(data):
153+
stem = Path(data[0]).stem
154+
stem = stem[: -len("_leftImg8bit")]
155+
return stem
156+
157+
def target_key_fn(data, level=0):
158+
path = data[0]
159+
for _ in range(level):
160+
path = path[0]
161+
stem = Path(path).stem
162+
i = stem.rfind("_gt")
163+
stem = stem[:i]
164+
return stem
165+
166+
zipped_targets_dp = targets_dps[0]
167+
for level, data_dp in enumerate(targets_dps[1:]):
168+
zipped_targets_dp = IterKeyZipper(
169+
zipped_targets_dp,
170+
data_dp,
171+
key_fn=partial(target_key_fn, level=level),
172+
ref_key_fn=target_key_fn,
173+
buffer_size=INFINITE_BUFFER_SIZE,
174+
)
175+
176+
samples = IterKeyZipper(
177+
images_dp,
178+
zipped_targets_dp,
179+
key_fn=img_key_fn,
180+
ref_key_fn=partial(target_key_fn, level=len(targets_dps) - 1),
181+
buffer_size=INFINITE_BUFFER_SIZE,
182+
)
183+
return Mapper(samples, fn=self._prepare_sample)

0 commit comments

Comments
 (0)