Skip to content

Commit 01ef0a6

Browse files
vfdev-5NicolasHug
andauthored
Fixed uncaught warnings in tests v2 (#7330)
Co-authored-by: Nicolas Hug <[email protected]>
1 parent 8e849ea commit 01ef0a6

File tree

1 file changed

+27
-14
lines changed

1 file changed

+27
-14
lines changed

test/test_transforms_v2.py

+27-14
Original file line numberDiff line numberDiff line change
@@ -136,14 +136,14 @@ class TestSmoke:
136136
(transforms.RandomCrop([16, 16], pad_if_needed=True), None),
137137
(transforms.RandomHorizontalFlip(p=1.0), None),
138138
(transforms.RandomPerspective(p=1.0), None),
139-
(transforms.RandomResize(min_size=10, max_size=20), None),
140-
(transforms.RandomResizedCrop([16, 16]), None),
139+
(transforms.RandomResize(min_size=10, max_size=20, antialias=True), None),
140+
(transforms.RandomResizedCrop([16, 16], antialias=True), None),
141141
(transforms.RandomRotation(degrees=30), None),
142-
(transforms.RandomShortestSize(min_size=10), None),
142+
(transforms.RandomShortestSize(min_size=10, antialias=True), None),
143143
(transforms.RandomVerticalFlip(p=1.0), None),
144144
(transforms.RandomZoomOut(p=1.0), None),
145145
(transforms.Resize([16, 16], antialias=True), None),
146-
(transforms.ScaleJitter((16, 16), scale_range=(0.8, 1.2)), None),
146+
(transforms.ScaleJitter((16, 16), scale_range=(0.8, 1.2), antialias=True), None),
147147
(transforms.ClampBoundingBox(), None),
148148
(transforms.ConvertBoundingBoxFormat(datapoints.BoundingBoxFormat.CXCYWH), None),
149149
(transforms.ConvertDtype(), None),
@@ -1514,7 +1514,7 @@ class TestRandomShortestSize:
15141514
def test__get_params(self, min_size, max_size, mocker):
15151515
spatial_size = (3, 10)
15161516

1517-
transform = transforms.RandomShortestSize(min_size=min_size, max_size=max_size)
1517+
transform = transforms.RandomShortestSize(min_size=min_size, max_size=max_size, antialias=True)
15181518

15191519
sample = mocker.MagicMock(spec=datapoints.Image, num_channels=3, spatial_size=spatial_size)
15201520
params = transform._get_params([sample])
@@ -1595,7 +1595,7 @@ def test__get_params(self):
15951595
min_size = 3
15961596
max_size = 6
15971597

1598-
transform = transforms.RandomResize(min_size=min_size, max_size=max_size)
1598+
transform = transforms.RandomResize(min_size=min_size, max_size=max_size, antialias=True)
15991599

16001600
for _ in range(10):
16011601
params = transform._get_params([])
@@ -1791,15 +1791,21 @@ def test_classif_preset(image_type, label_type, dataset_return_type, to_tensor):
17911791
else:
17921792
sample = image, label
17931793

1794+
if to_tensor is transforms.ToTensor:
1795+
with pytest.warns(UserWarning, match="deprecated and will be removed"):
1796+
to_tensor = to_tensor()
1797+
else:
1798+
to_tensor = to_tensor()
1799+
17941800
t = transforms.Compose(
17951801
[
1796-
transforms.RandomResizedCrop((224, 224)),
1802+
transforms.RandomResizedCrop((224, 224), antialias=True),
17971803
transforms.RandomHorizontalFlip(p=1),
17981804
transforms.RandAugment(),
17991805
transforms.TrivialAugmentWide(),
18001806
transforms.AugMix(),
18011807
transforms.AutoAugment(),
1802-
to_tensor(),
1808+
to_tensor,
18031809
# TODO: ConvertImageDtype is a pass-through on PIL images, is that
18041810
# intended? This results in a failure if we convert to tensor after
18051811
# it, because the image would still be uint8 which make Normalize
@@ -1830,10 +1836,17 @@ def test_classif_preset(image_type, label_type, dataset_return_type, to_tensor):
18301836
@pytest.mark.parametrize("sanitize", (True, False))
18311837
def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
18321838
torch.manual_seed(0)
1839+
1840+
if to_tensor is transforms.ToTensor:
1841+
with pytest.warns(UserWarning, match="deprecated and will be removed"):
1842+
to_tensor = to_tensor()
1843+
else:
1844+
to_tensor = to_tensor()
1845+
18331846
if data_augmentation == "hflip":
18341847
t = [
18351848
transforms.RandomHorizontalFlip(p=1),
1836-
to_tensor(),
1849+
to_tensor,
18371850
transforms.ConvertImageDtype(torch.float),
18381851
]
18391852
elif data_augmentation == "lsj":
@@ -1847,7 +1860,7 @@ def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
18471860
# ),
18481861
transforms.RandomCrop((1024, 1024), pad_if_needed=True),
18491862
transforms.RandomHorizontalFlip(p=1),
1850-
to_tensor(),
1863+
to_tensor,
18511864
transforms.ConvertImageDtype(torch.float),
18521865
]
18531866
elif data_augmentation == "multiscale":
@@ -1856,7 +1869,7 @@ def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
18561869
min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333, antialias=True
18571870
),
18581871
transforms.RandomHorizontalFlip(p=1),
1859-
to_tensor(),
1872+
to_tensor,
18601873
transforms.ConvertImageDtype(torch.float),
18611874
]
18621875
elif data_augmentation == "ssd":
@@ -1865,14 +1878,14 @@ def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
18651878
transforms.RandomZoomOut(fill=defaultdict(lambda: (123.0, 117.0, 104.0), {datapoints.Mask: 0})),
18661879
transforms.RandomIoUCrop(),
18671880
transforms.RandomHorizontalFlip(p=1),
1868-
to_tensor(),
1881+
to_tensor,
18691882
transforms.ConvertImageDtype(torch.float),
18701883
]
18711884
elif data_augmentation == "ssdlite":
18721885
t = [
18731886
transforms.RandomIoUCrop(),
18741887
transforms.RandomHorizontalFlip(p=1),
1875-
to_tensor(),
1888+
to_tensor,
18761889
transforms.ConvertImageDtype(torch.float),
18771890
]
18781891
if sanitize:
@@ -1907,7 +1920,7 @@ def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
19071920

19081921
out = t(sample)
19091922

1910-
if to_tensor is transforms.ToTensor and image_type is not datapoints.Image:
1923+
if isinstance(to_tensor, transforms.ToTensor) and image_type is not datapoints.Image:
19111924
assert is_simple_tensor(out["image"])
19121925
else:
19131926
assert isinstance(out["image"], datapoints.Image)

0 commit comments

Comments
 (0)