|
32 | 32 | # the standard built in apps. If you modify the torchx example code you'll
|
33 | 33 | # need to rebuild the container before launching it on KFP
|
34 | 34 |
|
35 |
| -from torchx.version import TORCHX_IMAGE, EXAMPLES_IMAGE |
| 35 | +from torchx.version import TORCHX_IMAGE |
36 | 36 |
|
37 | 37 | parser.add_argument(
|
38 | 38 | "--image",
|
39 | 39 | type=str,
|
40 | 40 | help="docker image to use for the examples apps",
|
41 |
| - default=EXAMPLES_IMAGE, |
42 |
| -) |
43 |
| -parser.add_argument( |
44 |
| - "--torchx_image", |
45 |
| - type=str, |
46 |
| - help="docker image to use for the builtin torchx apps", |
47 | 41 | default=TORCHX_IMAGE,
|
48 | 42 | )
|
49 | 43 |
|
|
113 | 107 | copy_app: specs.AppDef = copy(
|
114 | 108 | "http://cs231n.stanford.edu/tiny-imagenet-200.zip",
|
115 | 109 | data_path,
|
116 |
| - image=args.torchx_image, |
| 110 | + image=args.image, |
117 | 111 | )
|
118 | 112 |
|
119 | 113 | # %%
|
|
124 | 118 | # specified ahead of time so we have a fully static pipeline.
|
125 | 119 |
|
126 | 120 |
|
127 |
| -from examples.apps.datapreproc.component import data_preproc |
| 121 | +from torchx.examples.apps.datapreproc.component import data_preproc |
128 | 122 |
|
129 | 123 | processed_data_path: str = os.path.join(args.output_path, "processed")
|
130 | 124 | datapreproc_app: specs.AppDef = data_preproc(
|
|
144 | 138 | if "__file__" in globals():
|
145 | 139 | sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..", ".."))
|
146 | 140 |
|
147 |
| -from examples.apps.lightning_classy_vision.component import trainer |
| 141 | +from torchx.examples.apps.lightning_classy_vision.component import trainer |
148 | 142 |
|
149 | 143 | logs_path: str = os.path.join(args.output_path, "logs")
|
150 | 144 | models_path: str = os.path.join(args.output_path, "models")
|
|
185 | 179 | serve_app: specs.AppDef = torchserve(
|
186 | 180 | model_path=os.path.join(models_path, "model.mar"),
|
187 | 181 | management_api=args.management_api,
|
188 |
| - image=args.torchx_image, |
| 182 | + image=args.image, |
189 | 183 | params={
|
190 | 184 | "model_name": args.model_name,
|
191 | 185 | # set this to allocate a worker
|
|
198 | 192 | # own component file. This component takes in the output from datapreproc and
|
199 | 193 | # train components and produces images with integrated gradient results.
|
200 | 194 |
|
201 |
| -from examples.apps.lightning_classy_vision.component import interpret |
| 195 | +from torchx.examples.apps.lightning_classy_vision.component import interpret |
202 | 196 |
|
203 | 197 | interpret_path: str = os.path.join(args.output_path, "interpret")
|
204 | 198 | interpret_app: specs.AppDef = interpret(
|
|
0 commit comments