|
| 1 | +import json |
| 2 | +import os |
| 3 | +import sys |
| 4 | +from pathlib import Path |
| 5 | +from typing import Optional |
| 6 | + |
| 7 | +import torch |
| 8 | + |
| 9 | +import torch.distributed.checkpoint as dcp |
| 10 | +import torch.nn.functional as F |
| 11 | +from torch.distributed.checkpoint import HuggingFaceStorageReader |
| 12 | +from torchtitan.components.checkpoint import excluded_parameters_for_model_only |
| 13 | +from torchtitan.config import ConfigManager |
| 14 | +from torchtitan.protocols.train_spec import get_train_spec |
| 15 | +from torchtitan.tools.logging import logger |
| 16 | +from transformers import AutoModelForCausalLM |
| 17 | + |
| 18 | +device_type = "cuda" if torch.cuda.is_available() else "cpu" |
| 19 | + |
| 20 | + |
| 21 | +def loss_fn(logits1, logits2): |
| 22 | + # Convert logits to probabilities |
| 23 | + probs1 = F.log_softmax(logits1, dim=-1) |
| 24 | + probs2 = F.softmax(logits2, dim=-1) |
| 25 | + |
| 26 | + # Calculate KL Divergence |
| 27 | + kl_loss = F.kl_div(probs1, probs2, "mean") |
| 28 | + return kl_loss |
| 29 | + |
| 30 | + |
| 31 | +@torch.no_grad |
| 32 | +def forward_hf(model_name, model_path: Optional[str], input_ids): |
| 33 | + # Load the tokenizer and model |
| 34 | + model_path = model_path if model_path else model_name |
| 35 | + model = AutoModelForCausalLM.from_pretrained(model_path) |
| 36 | + |
| 37 | + device = torch.device(device_type) |
| 38 | + model.to(device) |
| 39 | + |
| 40 | + # List to store outputs |
| 41 | + outputs_list = [] |
| 42 | + |
| 43 | + for inputs in input_ids: |
| 44 | + inputs = inputs.to(device) |
| 45 | + outputs = model.generate( |
| 46 | + inputs=inputs, |
| 47 | + max_length=prompt_len + 1, |
| 48 | + do_sample=False, |
| 49 | + output_logits=True, |
| 50 | + return_dict_in_generate=True, |
| 51 | + ) |
| 52 | + |
| 53 | + outputs = torch.stack(outputs.logits) |
| 54 | + outputs_list.append(outputs) |
| 55 | + |
| 56 | + del model |
| 57 | + torch.cuda.empty_cache() |
| 58 | + |
| 59 | + return outputs_list |
| 60 | + |
| 61 | + |
| 62 | +@torch.no_grad |
| 63 | +def forward_tt(config_path, checkpoint_path, test_set): |
| 64 | + |
| 65 | + config_manager = ConfigManager() |
| 66 | + config = config_manager.parse_args([f"--job.config_file={config_path}"]) |
| 67 | + |
| 68 | + train_spec = get_train_spec(config.model.name) |
| 69 | + |
| 70 | + model_args = train_spec.model_args[config.model.flavor] |
| 71 | + model_args.update_from_config(config) |
| 72 | + |
| 73 | + model = train_spec.model_cls(model_args) |
| 74 | + |
| 75 | + # materalize model |
| 76 | + device = torch.device(device_type) |
| 77 | + model.to_empty(device=device) |
| 78 | + with torch.no_grad(): |
| 79 | + model.init_weights() |
| 80 | + model.eval() |
| 81 | + |
| 82 | + state_dict = model.state_dict() |
| 83 | + for k in excluded_parameters_for_model_only: |
| 84 | + state_dict.pop(k, None) |
| 85 | + |
| 86 | + # Checkpoint Loading |
| 87 | + logger.info(f"Loading chkpt at: {checkpoint_path}") |
| 88 | + load_from_hf = False |
| 89 | + for filename in os.listdir(checkpoint_path): |
| 90 | + if filename == "model.safetensors.index.json": |
| 91 | + load_from_hf = True |
| 92 | + if load_from_hf: |
| 93 | + sd_adapter = train_spec.state_dict_adapter |
| 94 | + hf_state_dict = sd_adapter.to_hf(state_dict) |
| 95 | + dcp.load(hf_state_dict, HuggingFaceStorageReader(path=checkpoint_path)) |
| 96 | + state_dict = sd_adapter.from_hf(hf_state_dict) |
| 97 | + else: |
| 98 | + dcp.load(state_dict, checkpoint_id=checkpoint_path) |
| 99 | + |
| 100 | + output_list = [] |
| 101 | + for prompt in test_set: |
| 102 | + input_ids = prompt.to(device_type) |
| 103 | + # ensure batch dimension (T,) --> (B, T) |
| 104 | + if input_ids.ndim == 1: |
| 105 | + input_ids = input_ids.unsqueeze(0) |
| 106 | + |
| 107 | + # obtains the logits of only the last token in the predictions |
| 108 | + predictions = model(input_ids)[:, -1, :].unsqueeze(1) |
| 109 | + output_list.append(predictions) |
| 110 | + |
| 111 | + del model |
| 112 | + torch.cuda.empty_cache() |
| 113 | + |
| 114 | + return output_list |
| 115 | + |
| 116 | + |
| 117 | +if __name__ == "__main__": |
| 118 | + # hf params |
| 119 | + hf_model_name = "meta-llama/Meta-Llama-3-8B" |
| 120 | + hf_model_path = "outputs/checkpoint/step-0-tohf" |
| 121 | + hf_model_path_no_perm = "outputs/checkpoint/step-0-tohfnoperm" |
| 122 | + |
| 123 | + # tt params |
| 124 | + config_path = "torchtitan/models/llama3/train_configs/llama3_8b.toml" |
| 125 | + baseline_checkpoint_path = "outputs/checkpoint/step-0-fromllama" |
| 126 | + checkpoint_path = "outputs/checkpoint/step-0-fromhf" |
| 127 | + checkpoint_path_no_perm = "outputs/checkpoint/step-0-fromhfnoperm" |
| 128 | + |
| 129 | + # test params |
| 130 | + prompt_len = 8 |
| 131 | + test_size = 100 |
| 132 | + |
| 133 | + config_manager = ConfigManager() |
| 134 | + config = config_manager.parse_args([f"--job.config_file={config_path}"]) |
| 135 | + train_spec = get_train_spec(config.model.name) |
| 136 | + tokenizer = train_spec.build_tokenizer_fn(config) |
| 137 | + |
| 138 | + # Build test set of randomly generated token ids |
| 139 | + test_set = [ |
| 140 | + torch.randint( |
| 141 | + 0, |
| 142 | + tokenizer.get_vocab_size(), |
| 143 | + ( |
| 144 | + 1, # batch size |
| 145 | + prompt_len, |
| 146 | + ), |
| 147 | + ) |
| 148 | + for _ in range(test_size) |
| 149 | + ] |
| 150 | + |
| 151 | + # baseline logits |
| 152 | + baseline_hf_outputs = forward_hf(hf_model_name, None, test_set) |
| 153 | + baseline_tt_outputs = forward_tt(config_path, baseline_checkpoint_path, test_set) |
| 154 | + |
| 155 | + # testing from hf script |
| 156 | + from_hf_outputs = forward_tt(config_path, checkpoint_path, test_set) |
| 157 | + from_hf_outputs_no_perm = forward_tt(config_path, checkpoint_path_no_perm, test_set) |
| 158 | + |
| 159 | + # testing to hf script |
| 160 | + to_hf_outputs = forward_hf(hf_model_name, hf_model_path, test_set) |
| 161 | + to_hf_outputs_no_perm = forward_hf(hf_model_name, hf_model_path_no_perm, test_set) |
| 162 | + |
| 163 | + # Define the set of outputs to test loss for |
| 164 | + test_configs = { |
| 165 | + "from_hf": [baseline_hf_outputs, from_hf_outputs], |
| 166 | + "to_hf": [to_hf_outputs, baseline_tt_outputs], |
| 167 | + "from_hf_no_perm": [baseline_hf_outputs, from_hf_outputs_no_perm], |
| 168 | + "to_hf_no_perm": [to_hf_outputs_no_perm, baseline_tt_outputs], |
| 169 | + } |
| 170 | + avg_losses = {} |
| 171 | + |
| 172 | + for test_name, (hf, tt) in test_configs.items(): |
| 173 | + total_loss = 0 |
| 174 | + for hf, tt in zip(hf, tt): |
| 175 | + total_loss += loss_fn(hf, tt) |
| 176 | + avg_loss = total_loss / len(test_set) |
| 177 | + avg_losses[test_name] = avg_loss.item() |
| 178 | + |
| 179 | + for test_name, avg_loss in avg_losses.items(): |
| 180 | + print(f"Average loss of test {test_name} is {avg_loss}") |
0 commit comments