-
Notifications
You must be signed in to change notification settings - Fork 683
Open
Labels
module: vulkanIssues related to the Vulkan delegate and code under backends/vulkan/Issues related to the Vulkan delegate and code under backends/vulkan/
Description
🐛 Describe the bug
With some models (BART and T5), the executor running is failing in the vulkan delegate with the following error:
libc++abi: terminating due to uncaught exception of type vkcompute::vkapi::Error: Exception raised from get_shader_info at /path/to/executorch/backends/vulkan/runtime/api/ShaderRegistry.cpp:54: (it != listings_.end()) is false! Could not find ShaderInfo with name ___
For BART, the missing shader name is full_int32
For T5, the missing shader name is abs_int32_texture3d
To replicate, here are the commands I use to build the BART and T5 .pte files.
Bart:
from transformers import BartConfig, BartModel
import torch
# Initializing a BART facebook/bart-large style configuration
config = BartConfig()
# Initializing a model (with random weights) from the facebook/bart-large style configuration
model = BartModel(config)
# Accessing the model configuration
configuration = model.config
# Creating example input data
batch_size = 1
seq_length = 16
input_ids = torch.randint(0, config.vocab_size, (batch_size, seq_length))
attention_mask = torch.ones((batch_size, seq_length), dtype=torch.long)
from executorch.exir import to_edge
from executorch.backends.vulkan.partitioner.vulkan_partitioner import VulkanPartitioner
from torch.export import export
model.eval()
exported_program = export(model, (input_ids, attention_mask))
edge = to_edge(exported_program)
# Lower the model to Vulkan backend
compile_options = {}
edge = edge.to_backend(VulkanPartitioner(compile_options))
# Makes the binary .pte ExecuTorch program file
exec_prog = edge.to_executorch()
with open("BART.pte", "wb") as file:
exec_prog.write_to_file(file)
T5:
from transformers import T5Config, T5Model
import torch
config = T5Config()
model = T5Model(config)
# Accessing the model configuration
configuration = model.config
# Creating example input data
batch_size = 1
seq_length = 16
input_ids = torch.randint(0, config.vocab_size, (batch_size, seq_length))
attention_mask = torch.ones((batch_size, seq_length), dtype=torch.long)
decoder_input_ids = torch.randint(0, config.vocab_size, (batch_size, seq_length))
from executorch.exir import to_edge
from executorch.backends.vulkan.partitioner.vulkan_partitioner import VulkanPartitioner
from torch.export import export
# Basic torch stuff to load model
model.eval()
exported_program = export(
model,
args=(),
kwargs={
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
}
)
edge = to_edge(exported_program)
# Lower the model to Vulkan backend
compile_options = {}
edge = edge.to_backend(VulkanPartitioner(compile_options))
# Makes the binary .pte ExecuTorch program file
exec_prog = edge.to_executorch()
with open("T5.pte", "wb") as file:
exec_prog.write_to_file(file)
Versions
Collecting environment information...
PyTorch version: 2.9.0.dev20250725+cpu
Is debug build: False
CUDA used to build PyTorch: None
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.30.4
Libc version: glibc-2.31
Python version: 3.10.17 | packaged by conda-forge | (main, Apr 10 2025, 22:19:12) [GCC 13.3.0] (64-bit runtime)
Python platform: Linux-5.15.0-139-generic-x86_64-with-glibc2.31
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
Is XPU available: False
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 48
On-line CPU(s) list: 0-47
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz
Stepping: 7
CPU MHz: 2200.000
CPU max MHz: 4000.0000
CPU min MHz: 1000.0000
BogoMIPS: 4400.00
Virtualization: VT-x
L1d cache: 768 KiB
L1i cache: 768 KiB
L2 cache: 24 MiB
L3 cache: 35.8 MiB
NUMA node0 CPU(s): 0-47
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; TSX disabled
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req pku ospke avx512_vnni md_clear flush_l1d arch_capabilities
Versions of relevant libraries:
[pip3] executorch==0.8.0a0+fe84495
[pip3] flake8==6.1.0
[pip3] flake8-breakpoint==1.1.0
[pip3] flake8-bugbear==24.4.26
[pip3] flake8-comprehensions==3.14.0
[pip3] flake8-plugin-utils==1.3.3
[pip3] flake8-pyi==23.5.0
[pip3] mypy==1.14.1
[pip3] mypy_extensions==1.1.0
[pip3] numpy==2.1.1
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] onnx==1.18.0
[pip3] pytorch_tokenizers==0.1.0
[pip3] torch==2.9.0.dev20250725+cpu
[pip3] torchao==0.13.0+git1526dfe50
[pip3] torchaudio==2.8.0.dev20250725+cpu
[pip3] torchdata==0.11.0
[pip3] torchexplorer==1.1.2
[pip3] torchsr==1.0.4
[pip3] torchtune==0.6.1
[pip3] torchview==0.2.7
[pip3] torchvision==0.24.0.dev20250725+cpu
[pip3] torchviz==0.0.3
[pip3] triton==3.4.0
[conda] executorch 0.8.0a0+fe84495 pypi_0 pypi
[conda] numpy 2.1.1 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.8.4.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.8.90 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.8.93 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.8.90 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.10.2.21 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.3.3.83 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.9.90 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.7.3.90 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.5.8.93 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.7.1 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.27.3 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.8.93 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.8.90 pypi_0 pypi
[conda] pytorch-tokenizers 0.1.0 pypi_0 pypi
[conda] torch 2.9.0.dev20250725+cpu pypi_0 pypi
[conda] torchao 0.13.0+git1526dfe50 pypi_0 pypi
[conda] torchaudio 2.8.0.dev20250725+cpu pypi_0 pypi
[conda] torchdata 0.11.0 pypi_0 pypi
[conda] torchexplorer 1.1.2 pypi_0 pypi
[conda] torchfix 0.6.0 pypi_0 pypi
[conda] torchsr 1.0.4 pypi_0 pypi
[conda] torchtune 0.6.1 pypi_0 pypi
[conda] torchview 0.2.7 pypi_0 pypi
[conda] torchvision 0.24.0.dev20250725+cpu pypi_0 pypi
[conda] torchviz 0.0.3 pypi_0 pypi
[conda] triton 3.4.0 pypi_0 pypi
Metadata
Metadata
Assignees
Labels
module: vulkanIssues related to the Vulkan delegate and code under backends/vulkan/Issues related to the Vulkan delegate and code under backends/vulkan/