Skip to content

Dtype not selected from exported pte via gen_oplist.py #11762

Open
@BujSet

Description

@BujSet

🐛 Describe the bug

The selective build process allows for a reduction in binary size by pruning operators and dtypes unused by a model. In this flow, an exported model is passed in as a .pte and a YAML file is generated that specifies what operators the model uses in it's kernels, and more specifically, which dtypes each kernel use. This process is accomplished from gen_oplist.py. However, it seems that this feature is incomplete, where if kernels depend on scalar types or mixing of types, this information is not reflected in the generated YAML. As a result, directly using an exported model fails to build a binary that can successfully run the model.

Example: MV2

Reproducing the Error

  1. Pull the changes from PR dtype selective build from model API in OSS #11760

  2. Change the model from add_mul to mv2 in examples/selective_build/test_selective_build.sh:test_cmake_select_ops_in_model by updating the model_name variable. It's also helpful to comment running the other known working examples (i.e. comment out calls to test_cmake_select_all_ops, test_cmake_select_ops_in_list, and test_cmake_select_ops_in_yaml at the bottom of the file).

  3. Run CMAKE_BUILD_TYPE=Debug bash examples/selective_build/test_selective_build.sh cmake

Erroneous Output

Running selective build test
I 00:00:00.007215 executorch:executor_runner.cpp:166] Model file ./mv2.pte is loaded.
I 00:00:00.007265 executorch:executor_runner.cpp:175] Using method forward
I 00:00:00.007268 executorch:executor_runner.cpp:226] Setting up planned buffer 0, size 9936896.
I 00:00:00.013956 executorch:executor_runner.cpp:251] Method loaded.
E 00:00:00.119792 executorch:op_hardtanh.cpp:49] dtype '7' not selected for operator hardtanh.out
examples/selective_build/test_selective_build.sh: line 188: 97834 Aborted                 (core dumped) ${build_dir}/selective_build_test --model_path="./${model_export_name}"

Expected Correct Output

Running selective build test
I 00:00:00.006460 executorch:executor_runner.cpp:166] Model file ./mv2.pte is loaded.
I 00:00:00.006514 executorch:executor_runner.cpp:175] Using method forward
I 00:00:00.006518 executorch:executor_runner.cpp:226] Setting up planned buffer 0, size 9936896.
I 00:00:00.012543 executorch:executor_runner.cpp:251] Method loaded.
I 00:00:02.040406 executorch:executor_runner.cpp:286] Model executed successfully 1 time(s) in 2027.465383 ms.
I 00:00:02.040460 executorch:executor_runner.cpp:295] 1 outputs:
Output 0: tensor(sizes=[1, 1000], [
  -0.50986, 0.300638, 0.0953863, 0.147721, 0.231201, 0.338555, 0.20689, -0.0575741, -0.389267, -0.0606858,
  -0.0213996, -0.121034, -0.288955, 0.134052, -0.171977, -0.060362, 0.0203591, -0.0585306, 0.337859, -0.0718654,
  0.490758, 0.524143, 0.197859, 0.122067, -0.35913, 0.10946, 0.347745, 0.478512, 0.226557, 0.0363519,
  0.0159222, 0.351968, 0.259108, -0.0542904, 0.285078, -0.221401, 0.237158, -0.37855, 0.395099, -0.0668773,
  0.357144, 0.400389, 0.389972, -0.189018, 0.243556, -0.103936, 0.59233, 0.00743124, -0.183807, -0.446251,
  -0.182806, -0.679565, 0.663799, 0.560698, 0.36292, -0.0855703, 0.142371, 0.172887, 0.593105, 0.305173,
  0.447632, -0.138463, -0.149108, 0.0632436, -0.123253, 0.511503, 0.519203, 0.392346, 0.731631, 0.765339,
  0.460779, 0.611433, -0.209274, 0.328234, -0.142376, 0.699485, 0.0476216, 0.562073, 1.51457, 0.82576,
  0.126681, 0.0498374, -0.0896502, -0.142817, -0.0252687, 0.00359075, 0.081921, -0.214227, 0.0404567, 0.105458,
  -0.26851, -0.0829341, 0.331348, -0.345984, -0.134045, -0.291839, -0.11803, -0.102925, 0.158997, -0.0496262,
  ...,
  -0.188095, -0.694422, 0.220409, -0.0921088, 0.761138, 0.212514, 0.0171788, 0.461986, 0.68566, -0.12282,
  0.352448, 2.10309, 0.211247, 0.0732217, -0.366486, -0.500694, -0.00568692, -0.186638, 0.256018, 0.101071,
  -0.112591, 0.0633926, 0.519903, -0.54318, -0.223358, 0.155168, -0.230606, -0.1803, -0.402723, -0.102211,
  0.331329, -0.0324419, 0.428074, -0.253914, -0.192847, -0.207004, 0.521813, 0.121381, 0.284393, -0.160643,
  0.0179822, 0.290285, 0.32836, 0.154162, 0.193863, 0.287697, -0.0284052, -0.119623, 0.955583, 0.581977,
  0.808394, 0.669403, 0.272966, 0.16154, 0.379886, 0.212432, -0.325236, 0.100538, 0.292686, -0.382238,
  -0.389105, 0.447179, -0.124381, 0.214349, 0.592604, -0.367158, 0.191234, 0.423559, 0.349306, 0.0348439,
  -0.227163, 0.567011, 0.202894, 0.710074, 0.421646, -0.00655031, 0.0114807, 0.398907, 0.0349879, -0.163214,
  0.187845, -0.154384, -0.227154, 0.150878, 0.265108, 0.0874923, -0.188225, 0.0213076, -0.0293802, -0.279631,
  0.421222, 0.100449, -0.506771, -0.115821, -0.693017, -0.18326, 0.154781, -0.410681, 0.0119343, 0.449715,
])
Removing mv2.pte

Versions

Collecting environment information...
PyTorch version: 2.8.0.dev20250601+cpu
Is debug build: False
CUDA used to build PyTorch: None
ROCM used to build PyTorch: N/A

OS: Ubuntu 24.04.2 LTS (x86_64)
GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version: Could not collect
CMake version: version 3.31.6
Libc version: glibc-2.39

Python version: 3.10.0 (default, Mar  3 2022, 09:58:08) [GCC 7.5.0] (64-bit runtime)
Python platform: Linux-6.6.87.1-microsoft-standard-WSL2-x86_64-with-glibc2.39
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        46 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               10
On-line CPU(s) list:                  0-9
Vendor ID:                            GenuineIntel
Model name:                           Intel(R) Core(TM) Ultra 7 165U
CPU family:                           6
Model:                                170
Thread(s) per core:                   2
Core(s) per socket:                   5
Socket(s):                            1
Stepping:                             4
BogoMIPS:                             5376.00
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves avx_vnni vnmi umip waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize flush_l1d arch_capabilities
Virtualization:                       VT-x
Hypervisor vendor:                    Microsoft
Virtualization type:                  full
L1d cache:                            240 KiB (5 instances)
L1i cache:                            320 KiB (5 instances)
L2 cache:                             10 MiB (5 instances)
L3 cache:                             12 MiB (1 instance)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-9
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] executorch==0.7.0a0+64e04ea
[pip3] flake8==6.1.0
[pip3] flake8-breakpoint==1.1.0
[pip3] flake8-bugbear==24.4.26
[pip3] flake8-comprehensions==3.14.0
[pip3] flake8-plugin-utils==1.3.3
[pip3] flake8-pyi==23.5.0
[pip3] mypy==1.14.1
[pip3] mypy_extensions==1.1.0
[pip3] numpy==2.2.6
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pytorch_tokenizers==0.1.0
[pip3] torch==2.8.0.dev20250601+cpu
[pip3] torchao==0.12.0+gitbc68b11f
[pip3] torchaudio==2.8.0.dev20250601+cpu
[pip3] torchdata==0.11.0
[pip3] torchsr==1.0.4
[pip3] torchtune==0.6.1
[pip3] torchvision==0.23.0.dev20250601+cpu
[pip3] triton==3.3.0
[conda] executorch                0.7.0a0+64e04ea          pypi_0    pypi
[conda] numpy                     2.2.6                    pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.6.80                  pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.6.77                  pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.6.77                  pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.7.77                pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.3                    pypi_0    pypi
[conda] nvidia-nccl-cu12          2.26.2                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.6.85                  pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.6.77                  pypi_0    pypi
[conda] pytorch-tokenizers        0.1.0                    pypi_0    pypi
[conda] torch                     2.8.0.dev20250601+cpu          pypi_0    pypi
[conda] torchao                   0.12.0+gitbc68b11f          pypi_0    pypi
[conda] torchaudio                2.8.0.dev20250601+cpu          pypi_0    pypi
[conda] torchdata                 0.11.0                   pypi_0    pypi
[conda] torchfix                  0.6.0                    pypi_0    pypi
[conda] torchsr                   1.0.4                    pypi_0    pypi
[conda] torchtune                 0.6.1                    pypi_0    pypi
[conda] torchvision               0.23.0.dev20250601+cpu          pypi_0    pypi
[conda] triton                    3.3.0                    pypi_0    pypi

cc @larryliu0820 @manuelcandales

Metadata

Metadata

Labels

module: kernelsIssues related to kernel libraries and utilities, and code under kernels/triagedThis issue has been looked at a team member, and triaged and prioritized into an appropriate module

Type

No type

Projects

Status

To triage

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions