|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD 3-Clause license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +import unittest |
| 8 | + |
| 9 | +import torch |
| 10 | +from torch.testing._internal.common_utils import ( |
| 11 | + TestCase, |
| 12 | + run_tests, |
| 13 | +) |
| 14 | + |
| 15 | +from torchao.quantization import ( |
| 16 | + FbgemmConfig, |
| 17 | + quantize_, |
| 18 | +) |
| 19 | +from torchao.quantization.utils import compute_error |
| 20 | +from torchao.utils import ( |
| 21 | + TORCH_VERSION_AT_LEAST_2_8, |
| 22 | + is_sm_at_least_90, |
| 23 | +) |
| 24 | + |
| 25 | + |
| 26 | +@unittest.skipIf(not TORCH_VERSION_AT_LEAST_2_8, "Need pytorch 2.8+") |
| 27 | +@unittest.skipIf(not torch.cuda.is_available(), "Need CUDA available") |
| 28 | +@unittest.skipIf(not is_sm_at_least_90(), "Nedd sm90+") |
| 29 | +class TestInt4GroupwisePreshuffleTensor(TestCase): |
| 30 | + def setUp(self): |
| 31 | + self.config = FbgemmConfig( |
| 32 | + input_dtype=torch.bfloat16, |
| 33 | + weight_dtype=torch.int4, |
| 34 | + output_dtype=torch.bfloat16, |
| 35 | + block_size=[1, 128], |
| 36 | + preshuffle=True, |
| 37 | + ) |
| 38 | + self.bmm_config = FbgemmConfig( |
| 39 | + input_dtype=torch.bfloat16, |
| 40 | + weight_dtype=torch.int4, |
| 41 | + output_dtype=torch.bfloat16, |
| 42 | + block_size=[1, 1, 128], |
| 43 | + preshuffle=True, |
| 44 | + ) |
| 45 | + self.GPU_DEVICES = ["cuda"] if torch.cuda.is_available() else [] |
| 46 | + |
| 47 | + def test_linear(self): |
| 48 | + dtype = torch.bfloat16 |
| 49 | + device = "cuda" |
| 50 | + input = torch.randn(1, 128, dtype=dtype, device=device) |
| 51 | + linear = torch.nn.Linear(128, 256, dtype=dtype, device=device) |
| 52 | + original = linear(input) |
| 53 | + quantize_(linear, self.config) |
| 54 | + quantized = linear(input) |
| 55 | + self.assertTrue(compute_error(original, quantized) > 20) |
| 56 | + |
| 57 | + @unittest.skip("WIP: this doesn't work yet") |
| 58 | + def test_slice(self): |
| 59 | + dtype = torch.bfloat16 |
| 60 | + device = "cuda" |
| 61 | + dummy = torch.nn.Linear(256, 256, bias=False, dtype=dtype, device=device) |
| 62 | + dummy1 = torch.nn.Linear(256, 64, bias=False, dtype=dtype, device=device) |
| 63 | + dummy1.weight = torch.nn.Parameter( |
| 64 | + dummy.weight.narrow(0, 0, 64), requires_grad=False |
| 65 | + ) |
| 66 | + dummy2 = torch.nn.Linear(128, 256, dtype=dtype, device=device) |
| 67 | + dummy2.weight = torch.nn.Parameter( |
| 68 | + dummy.weight.narrow(1, 0, 128), requires_grad=False |
| 69 | + ) |
| 70 | + |
| 71 | + quantize_(dummy, self.config) |
| 72 | + weight1 = dummy.weight.narrow(0, 0, 64) |
| 73 | + weight2 = dummy.weight.narrow(1, 0, 128) |
| 74 | + self.assertEqual( |
| 75 | + weight1.packed_weight, dummy.weight.packed_weight.narrow(0, 0, 64) |
| 76 | + ) |
| 77 | + self.assertEqual(weight1.group_scale, dummy.weight.group_scale.narrow(1, 0, 64)) |
| 78 | + self.assertEqual( |
| 79 | + weight2.packed_weight, dummy.weight.packed_weight.narrow(1, 0, 64) |
| 80 | + ) |
| 81 | + self.assertEqual(weight2.group_scale, dummy.weight.group_scale.narrow(0, 0, 1)) |
| 82 | + |
| 83 | + # check for sliced weight, before and after float8 quantization |
| 84 | + # does not differ too much |
| 85 | + input = torch.randn(2, 256, dtype=dtype, device=device) |
| 86 | + res_ref = dummy1(input) |
| 87 | + dummy.weight = torch.nn.Parameter(weight1, requires_grad=False) |
| 88 | + res = dummy(input) |
| 89 | + sqnr = compute_error(res, res_ref) |
| 90 | + assert sqnr > 20, f"Got: {sqnr}" |
| 91 | + |
| 92 | + input = torch.randn(2, 128, dtype=dtype, device=device) |
| 93 | + res_ref = dummy2(input) |
| 94 | + dummy.weight = torch.nn.Parameter(weight2, requires_grad=False) |
| 95 | + res = dummy(input) |
| 96 | + sqnr = compute_error(res, res_ref) |
| 97 | + assert sqnr > 15, f"Got: {sqnr}" |
| 98 | + |
| 99 | + def test_slice_and_copy_(self): |
| 100 | + l = torch.nn.Linear(1024, 1024).to("cuda").to(torch.bfloat16) |
| 101 | + l.weight = torch.nn.Parameter( |
| 102 | + torch.zeros(1024, 1024, dtype=torch.bfloat16, device="cuda") |
| 103 | + ) |
| 104 | + quantize_(l, self.config) |
| 105 | + param = l.weight |
| 106 | + param_data = param.data |
| 107 | + param_data = param_data.narrow(0, 0, 512) |
| 108 | + assert ( |
| 109 | + param.data.packed_weight.data_ptr() == param_data.packed_weight.data_ptr() |
| 110 | + ) |
| 111 | + assert param.data.group_scale.data_ptr() == param_data.group_scale.data_ptr() |
| 112 | + assert param.data.row_scale.data_ptr() == param_data.row_scale.data_ptr() |
| 113 | + orig_value = param.data.packed_weight[0][0].item() |
| 114 | + |
| 115 | + # dummy_l has random input (shouldn't be 0) |
| 116 | + dummy_l = torch.nn.Linear(1024, 1024).to("cuda").to(torch.bfloat16) |
| 117 | + quantize_(dummy_l, self.config) |
| 118 | + quantized = dummy_l.weight |
| 119 | + quantized = quantized.narrow(0, 0, 512) |
| 120 | + |
| 121 | + param_data.copy_(quantized) |
| 122 | + |
| 123 | + # making sure param.data is updated |
| 124 | + assert param.data.packed_weight[0][0] != orig_value |
| 125 | + |
| 126 | + def test_bmm(self): |
| 127 | + class M(torch.nn.Module): |
| 128 | + def __init__(self, weight): |
| 129 | + super().__init__() |
| 130 | + self.weight = weight |
| 131 | + |
| 132 | + def forward(self, x): |
| 133 | + return torch.bmm(x, self.weight) |
| 134 | + |
| 135 | + dtype = torch.bfloat16 |
| 136 | + device = "cuda" |
| 137 | + input = torch.randn(10, 32, 128, dtype=dtype, device=device) |
| 138 | + weight = torch.randn(10, 128, 256, dtype=dtype, device=device) |
| 139 | + m = M(weight).eval() |
| 140 | + original = m(input) |
| 141 | + m.weight = torch.nn.Parameter(m.weight.transpose(1, 2).contiguous()) |
| 142 | + quantize_(m, self.bmm_config, filter_fn=lambda x, fqn: True) |
| 143 | + quantized = m(input) |
| 144 | + self.assertTrue(compute_error(original, quantized) > 18) |
| 145 | + |
| 146 | + def test_to_device(self): |
| 147 | + for device in self.GPU_DEVICES: |
| 148 | + linear = torch.nn.Linear(128, 256, dtype=torch.bfloat16) |
| 149 | + quantize_(linear, self.config) |
| 150 | + linear.to(device) |
| 151 | + |
| 152 | + linear = torch.nn.Linear(128, 256, dtype=torch.bfloat16) |
| 153 | + quantize_(linear, self.config) |
| 154 | + linear.to(device=device) |
| 155 | + |
| 156 | + linear = torch.nn.Linear(128, 256, dtype=torch.bfloat16) |
| 157 | + quantize_(linear, self.config) |
| 158 | + linear.to(device) |
| 159 | + |
| 160 | + |
| 161 | +if __name__ == "__main__": |
| 162 | + run_tests() |
0 commit comments