|
| 1 | +""" |
| 2 | +Dynamo Compile Advanced Usage |
| 3 | +========================= |
| 4 | +
|
| 5 | +This interactive script is intended as an overview of the process by which `torch_tensorrt.dynamo.compile` works, and how it integrates with the new `torch.compile` API.""" |
| 6 | + |
| 7 | +# %% |
| 8 | +# Imports and Model Definition |
| 9 | +# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 10 | + |
| 11 | +import torch |
| 12 | +from torch_tensorrt.fx.lower_setting import LowerPrecision |
| 13 | + |
| 14 | +# %% |
| 15 | + |
| 16 | +# We begin by defining a model |
| 17 | +class Model(torch.nn.Module): |
| 18 | + def __init__(self) -> None: |
| 19 | + super().__init__() |
| 20 | + self.relu = torch.nn.ReLU() |
| 21 | + |
| 22 | + def forward(self, x: torch.Tensor, y: torch.Tensor): |
| 23 | + x_out = self.relu(x) |
| 24 | + y_out = self.relu(y) |
| 25 | + x_y_out = x_out + y_out |
| 26 | + return torch.mean(x_y_out) |
| 27 | + |
| 28 | + |
| 29 | +# %% |
| 30 | +# Compilation with `torch.compile` Using Default Settings |
| 31 | +# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 32 | + |
| 33 | +# Define sample float inputs and initialize model |
| 34 | +sample_inputs = [torch.rand((5, 7)).cuda(), torch.rand((5, 7)).cuda()] |
| 35 | +model = Model().eval().cuda() |
| 36 | + |
| 37 | +# %% |
| 38 | + |
| 39 | +# Next, we compile the model using torch.compile |
| 40 | +# For the default settings, we can simply call torch.compile |
| 41 | +# with the backend "torch_tensorrt", and run the model on an |
| 42 | +# input to cause compilation, as so: |
| 43 | +optimized_model = torch.compile(model, backend="torch_tensorrt") |
| 44 | +optimized_model(*sample_inputs) |
| 45 | + |
| 46 | +# %% |
| 47 | +# Compilation with `torch.compile` Using Custom Settings |
| 48 | +# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 49 | + |
| 50 | +# First, we use Torch utilities to clean up the workspace |
| 51 | +# after the previous compile invocation |
| 52 | +torch._dynamo.reset() |
| 53 | + |
| 54 | +# Define sample half inputs and initialize model |
| 55 | +sample_inputs_half = [ |
| 56 | + torch.rand((5, 7)).half().cuda(), |
| 57 | + torch.rand((5, 7)).half().cuda(), |
| 58 | +] |
| 59 | +model_half = Model().eval().cuda() |
| 60 | + |
| 61 | +# %% |
| 62 | + |
| 63 | +# If we want to customize certain options in the backend, |
| 64 | +# but still use the torch.compile call directly, we can provide |
| 65 | +# custom options to the backend via the "options" keyword |
| 66 | +# which takes in a dictionary mapping options to values. |
| 67 | +# |
| 68 | +# For accepted backend options, see the CompilationSettings dataclass: |
| 69 | +# py/torch_tensorrt/dynamo/backend/_settings.py |
| 70 | +backend_kwargs = { |
| 71 | + "precision": LowerPrecision.FP16, |
| 72 | + "debug": True, |
| 73 | + "min_block_size": 2, |
| 74 | + "torch_executed_ops": {"torch.ops.aten.sub.Tensor"}, |
| 75 | + "optimization_level": 4, |
| 76 | + "use_experimental_rt": True, |
| 77 | +} |
| 78 | + |
| 79 | +# Run the model on an input to cause compilation, as so: |
| 80 | +optimized_model_custom = torch.compile( |
| 81 | + model_half, backend="torch_tensorrt", options=backend_kwargs |
| 82 | +) |
| 83 | +optimized_model_custom(*sample_inputs_half) |
| 84 | + |
| 85 | +# %% |
| 86 | +# Cleanup |
| 87 | +# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 88 | + |
| 89 | +# Finally, we use Torch utilities to clean up the workspace |
| 90 | +torch._dynamo.reset() |
| 91 | + |
| 92 | +with torch.no_grad(): |
| 93 | + torch.cuda.empty_cache() |
0 commit comments