forked from alered87/Graph-Regularization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTRgraph.m
447 lines (408 loc) · 16.2 KB
/
TRgraph.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
classdef TRgraph < handle
%TRgraph : class for on-line graph regularization from data following
% temporal manifold
properties
parameters = [10;4;10]; % model parameter, see help of BuildingMatrix
tau = 12; % updatng time sampling step
lambda = .01; % regularization parameter
eta = .5; % balancing between temporal and spatial contribution
rho = 5; % number of neighbors to consider to compute spatial contribution
epsilon = 3; % radius of the spheres in the graph
classes = 10; % number of classes to predict
NN = 50; % Number of nearest neighbor to compute the adjacency distance matrix
epsilon_distance = 'euclidean'; % function evaluating the distance to add a new node
graph_weights = 'gaussian'; % weights of the spatial adjacency matrix
graphWeightsParam = 3; % parameter of the spatial weights
f_bound = 10; % upper bound for the predictions
% fixed
x = []; % last point seen
b; % reciprocal of square root input derivative
A_G = sparse(1,1); % distance weights adjacency matrix
T_G = sparse(1,1); % temporal links adjacency matrix
R_G = sparse(1,1); % node matrix
ln = 1; % pointer to last node
f_flag = 0; % divergence flag for f
step = 1; % index for f_plot
% SE = []; % square error in epochs of training vector
% Accuracy = []; % classification accuracy in epochs of training vector
% computed
A;B;theta;order;solutions; % Linear System Variables
M; % linear system matrix for updating formula
M2; % linear system matrix for half step updating formula
M2Bl; % coefficients matrix for updating formula
f; % Initial Cauchy Conditions
E;V_y;V_T;V_S; % error gradients
f_G; % number_of_nodes-by-(classes+1) matrix containing the last
% prediction on each node, first element of row is supervisions counter
f_plot; % function saving the evolutions of f in time (saved for analisys)
end
methods
%% CONSTRUCTOR
function G = TRgraph(varargin)
numberargs = nargin;
if rem(numberargs,2) ~= 0
error('Arguments must occur in name-value pairs.');
end
if numberargs > 0
for i = 1:2:numberargs
if ~ischar(varargin{i})
error('Arguments name must be strings.');
end
G.(varargin{i}) = varargin{i+1};
end
end
[G.A,G.B,G.theta,G.order,...
G.solutions] = makeSystemMatrix(G.parameters);
G.M = expm(G.A*G.tau);
G.M2 = expm(G.A*G.tau/2);
G.M2Bl = G.M2*G.B/G.lambda;
G.f = zeros(G.order,G.classes);
G.f_G = zeros(1,G.classes+1);
G.f_plot = zeros(1,G.classes);
end
%% Setting Methods
function set.tau(G,tau)
msg = 'tau must be a real number greater than 0';
if isa(tau,'char') || tau<=0 || ~isfinite(tau) || isempty(tau)
error(msg);
else
G.tau = tau;
end
end
%%
function set.lambda(G,lambda)
msg = 'lambda must be a real number greater than 0';
if isa(lambda,'char') || lambda<=0 || ~isfinite(lambda) || isempty(lambda)
error(msg);
else
G.lambda = lambda;
end
end
%%
function set.eta(G,eta)
msg = 'eta must be a real number between 0 and 1';
if isa(eta,'char') || eta<0 || eta>1 || ~isfinite(eta) || isempty(eta)
error(msg);
else
G.eta = eta;
end
end
%%
function set.rho(G,rho)
msg = 'rho must be an integer';
if ((rho-round(rho))~=0)
error(msg);
else
G.rho = rho;
end
end
%%
function set.epsilon(G,epsilon)
msg = 'epsilon must be a positive real number';
if isa(epsilon,'char') || epsilon<0 || ~isfinite(epsilon) || isempty(epsilon)
error(msg);
else
G.epsilon = epsilon;
end
end
%%
function set.classes(G,classes)
msg = 'classes must be an integer';
if ((classes-round(classes))~=0)
error(msg);
else
G.classes = classes;
end
end
%%
function set.NN(G,NN)
msg = 'classes must be an integer';
if ((NN-round(NN))~=0)
error(msg);
else
G.NN = NN;
end
end
%%
function set.epsilon_distance(G,epsilon_distance)
msg = 'epsilon_distance must be a string';
if ~isa(epsilon_distance,'char') || isempty(epsilon_distance)
error(msg);
else
G.epsilon_distance = epsilon_distance;
end
end
%%
function set.graph_weights(G,graph_weights)
msg = 'graph_weights must be a string';
if ~isa(graph_weights,'char') || isempty(graph_weights)
error(msg);
else
G.graph_weights = graph_weights;
end
end
%%
function set.graphWeightsParam(G,graphWeightsParam)
msg = 'graphWeightsParam must be a real number strictly greater than 0';
if isa(graphWeightsParam,'char') || graphWeightsParam<=0 || ~isfinite(graphWeightsParam) || isempty(graphWeightsParam)
error(msg);
else
G.graphWeightsParam = graphWeightsParam;
end
end
%%
function set.f_bound(G,f_bound)
msg = 'f_bound must be a real number greater than 0 (possibly Inf/NaN)';
if isa(f_bound,'char') || f_bound<=0 || isempty(f_bound)
error(msg);
else
G.f_bound = f_bound;
end
end
%%
function D = epsDistance(G,X,Y)
% epsDistance : computes the distances between the elements of X and Y,
% using the method according to G.epsilon_distance
%
% D = epsDistance(G,X,Y)
%
% X : M-by-P matrix of M P-dimensional vectors
% Y : N-by-P matrix of M P-dimensional vectors
%
% D : M-by-N distance matrix
switch G.epsilon_distance
case 'euclidean'
D = euclidean(X,Y);
% possible implementation of other cases
otherwise
error('Unknown graph nodes distance method: %s',G.epsilon_distance);
end
end
%%
function W = graphWeights(G,D)
% graphWeights : computes the weights of the adjacency matrix from the
% distances in D, according to the method in G.graph_weights
%
% W = graphWeights(G,D)
%
% D : vector of the euclidean distances
%
% W : weights vector of A_G
switch G.graph_weights
case 'gaussian'
t = G.graphWeightsParam;
W = exp((-D.^2)/(2*t*t)); % computing the distances
% possible implementation of other cases
otherwise
error('Unknown graph weights method: %s',G.graphWeightsParam);
end
end
%%
function temporalWeights(G,f)
% temporalWeights : calculating the error contribution from the nodes
% linked to the current one by a temporal edge, wrt the prediction f
%
% temporalWeights(G,f)
%
% f : current prediction
P = find(G.T_G(G.ln,:)~=0); % finding link position in T_G
F = repmat(f,length(P),1); % calculating differences
DF = F-G.f_G(P,2:end);
W = G.T_G(G.ln,P); % weights multiplication
W = full(W);
W = repmat(W',1,G.classes);
G.V_T = sum(W.*DF,1)/sum(W(:,1)); % averaged combination
norm = max(W(:,1))/(max(max(G.T_G))); % global normalization coefficient
G.V_T = G.eta*norm*G.V_T; % normalization
end
%%
function spatialWeights(G,f)
% spatialWeights : calculating the error contribution from the nearest
% nodes in G to the current one(up to rho),wrt the current prediction f
%
% f : current prediction
ps = nnz(G.A_G(G.ln,:)); % non-zero distance in the ln row
ns = min(G.rho,ps); % number of neighbors to use
if ns>0
[W,P] = sort(G.A_G(G.ln,:)); % sorting weights
P = P(end-ns+1:end); % taking the closest ns
W = full(W(end-ns+1:end));
F = repmat(f,ns,1); % calculating differences
DF = F-G.f_G(P,2:end);
W = repmat(W',1,G.classes); % weights multiplication
G.V_S = sum(W.*DF,1);
G.V_S = ((1-G.eta)/ns)*G.V_S; % normalization
else
G.V_S(1:G.classes) = 0;
end
end
%%
function error(G,f,y)
% error : calculate the sum of the external and graph contribution to
% update f
%
% error(G,f,y)
%
% f : current prediction
% y : possible external supervision (Inf/Nan means unsupervised
% example)
% calculating the external supervision contribution
if any(~isfinite(y(end)))
G.V_y(1:G.classes) = 0; % unsupervised sample
else
G.V_y = f-y; % supervised sample
end
G.spatialWeights(f); % spatial contribution
G.temporalWeights(f); % temporal contribution
G.E = G.V_y+G.V_T+G.V_S; % global error
end
%%
function epsNetUpdate(G,input)
% graphUpdate : updates the variables of the graph in G wrt the current input x
%
% graphUpdate(G,x)
%
% x : current input
d = G.epsDistance(input,G.R_G(G.ln,:));
if d <= G.epsilon % matching with last node
G.T_G(G.ln,G.ln) = G.T_G(G.ln,G.ln)+1; % updating temporal link
else
D = G.epsDistance(input,G.R_G);% computing the distances
[D,P] = sort(D);
if D(1) <= G.epsilon % matching best node
tmp = G.ln;
G.ln = P(1); % updating last node index
G.T_G(G.ln,tmp) = G.T_G(G.ln,tmp)+1; % updating temporal link
else % adding a new node
G.R_G = [G.R_G;input]; % adding new node to R_G
G.T_G(end+1,G.ln) = 1; % updating temporal link
G.T_G(end,end+1) = 0; % resizing T_G
G.ln = size(G.R_G,1); % updating last node index
G.f_G(G.ln,:) = [0 G.f(1,:)]; % saving the current value of f in
% the new node
G.A_G(end+1,end+1) = 1;
nn = min(length(D),G.NN); % number of edges to calculate in the adjacency matrix A_G
if nn>0
W = G.graphWeights(D(1:nn)); % calculating weights of A_G
G.A_G(end,P(1:nn)) = W; % insert the first nn distance G.A_G(P(1:nn),end) = W; % symmetrizing
end
end
end
end
%%
function update(G,input,target)
% update : updates the variables of G wrt the input and its target
%
% update(G,input,target)
%
% input : vector of input for f
% target : vector of target for f
dx = (input-G.x)/G.tau; % 1-step finite differences input derivatives
G.b = 1/sqrt(1+dx*dx'); % calculating the reciprocal of b
f_tmp = G.M2*G.f; % middle-step prediction (used to compute error)
G.step = G.step+1;
G.f_plot(G.step,:) = f_tmp(1,:); % saving the value
G.epsNetUpdate(input); % graph variables updating
G.error(f_tmp(1,:),target); % error computation
G.f = G.M*G.f + G.M2Bl*G.b*G.E; % f updating
if any(G.f(1,:)>G.f_bound)
G.f_flag = 1;
warning('f out of bound: enlarge regularization balancing');
return
end
if isfinite(target) % adding the provided supervision in the current node by
% averaging with the old values
node_sum = G.f_G(G.ln,2:end)*G.f_G(G.ln,1); % old contribution of f
G.f_G(G.ln,1) = G.f_G(G.ln,1)+1;% increase the node supervision counter
G.f_G(G.ln,2:end) = (target+node_sum)/G.f_G(G.ln,1); % averaging the new y
% [SE,A] = Perf_Eval(f_tmp(1,:),target);
% G.SE(end+1) = SE;
% G.Accuracy(end+1) = A;
else % no supervision
if G.f_G(G.ln,1) == 0
G.f_G(G.ln,2:end) = G.f(1,:);%saving the new prediction in the node
end
end
G.x = input; % saving current input for the next step derivatives approximation
G.step = G.step+1;
G.f_plot(G.step,:) = G.f(1,:); % saving the new value
end
%%
function train(G,Data,epochs)
% train : train the variables of G wrt Data for given epochs
%
% train(G,Data,epochs)
%
% Data : matrix containing row wise an element and its binary target
% (Nan/Inf-by-n_of_classes for target means unsupervised instance)
% epochs : number of times to train the model on data
%
% Author: Alessandro Rossi (2016)
N = size(Data);
if isempty(G.x) % first sample for the model, variable initialization
if size(Data,2) <= G.classes
error('Invalid Data dimension: check G.options.classes');
else
G.x = Data(1,1:end-G.classes);
G.R_G = sparse(G.x); % initialization of the node matrix
G.A_G(1,1) = 1; % initialization of the spatial adjacency matrix
G.T_G(1,1) = 1; % initialization of the temporal adjacency matrix
end
else % checking input dimension
input_size = N(2)-G.classes;
if length(G.x) ~= input_size;
error('Input dimension must be:%f',length(G.x));
end
end
% preallocating f_plot
totalsteps = size(Data,1)*epochs ;
G.f_plot = [G.f_plot; zeros(2*totalsteps,G.classes)] ;
fprintf('Steps left: ');
for i = 1:epochs
for j = 1:N(1)
fprintf('\b\b\b\b\b\b\b %6i',totalsteps-((i-1)*N(1)+j));
input = Data(j,1:end-G.classes);
target = Data(j,1+end-G.classes:end);
G.update(input,target);
if G.f_flag > 0 % f divergence checking
return
end
end
end
fprintf('\n');
end
%%
function [Accuracy,MSE] = test(G,Data)
% test: calculate performance on data by finding the nearest neighbor among the G nodes
%
% [Accuracy,MSE] = test(G,Data)
%
% Data : matrix containing row wise an element and its binary target
% (Nan/Inf-by-n_of_classes for target means unsupervised instance)
Data = Data(isfinite(sum(Data(:,end-G.classes+1:end),2)),:);
D = G.epsDistance(Data(:,1:end-G.classes),G.R_G);
[~,I]=sort(D,2);
P = G.f_G(I(:,1),2:end);
Y = Data(:,end-G.classes+1:end);
[Accuracy,MSE] = performance(P',Y');
end
end
end
function [Accuracy,MSE] = performance(Predictions,Targets)
% performance : calculate the prediction accuracy and MSE
%
% [Accuracy,MSE] = performance(Predictions,Targets)
%
% Predictions: output_size-by-n_of_samples matrix of predictions
% Targets : output_size-by-n_of_samples matrix of targets
Targets = Targets(:,isfinite(sum(Targets,1)));
Predictions = Predictions(:,isfinite(sum(Targets,1)));
N = numel(Targets);
if size(Targets,1)>1
Accuracy = mean(vec2ind(Predictions)==vec2ind(Targets));
else
Accuracy = mean((Predictions>.5)==(Targets>.5));
end
MSE = (0.5/N)*sum(sum((Predictions - Targets).^2,1),2);
end