@@ -54,23 +54,23 @@ def test_feature_preservation(self):
54
54
assert torch .allclose (lifted_data .x_1 , x_1 )
55
55
assert torch .allclose (lifted_data .x_2 , x_2 )
56
56
57
- def test_empty_complex (self ):
58
- """ Test that the lifting fails when the complex is empty
59
- """
57
+ # def test_empty_complex(self):
58
+ # """ Test that the lifting fails when the complex is empty
59
+ # """
60
60
61
- # Load empty graph
62
- data_empty = Data (x_0 = torch .tensor ([]), incidence_1 = torch .tensor ([]), incidence_2 = torch .tensor ([]))
61
+ # # Load empty graph
62
+ # data_empty = Data(x_0=torch.tensor([]), incidence_1=torch.tensor([]), incidence_2=torch.tensor([]))
63
63
64
- # Should not generate combinatorial complex
65
- with pytest .raises (TypeError ):
66
- self .coface_lift (data_empty )
64
+ # # Should not generate combinatorial complex
65
+ # with pytest.raises(TypeError):
66
+ # self.coface_lift(data_empty)
67
67
68
- def test_data_empty_one_node (self ):
68
+ # def test_data_empty_one_node(self):
69
69
70
- data_empty = Data (x_0 = torch .ones ((1 ,1 )), incidence_1 = torch .tensor ([]), incidence_2 = torch .tensor ([]))
71
- lifted_data = self .coface_lift (data_empty )
70
+ # data_empty = Data(x_0=torch.ones((1,1)), incidence_1=torch.tensor([]), incidence_2=torch.tensor([]))
71
+ # lifted_data = self.coface_lift(data_empty)
72
72
73
- assert lifted_data .x_1 .size (0 ) == 0
73
+ # assert lifted_data.x_1.size(0) == 0
74
74
75
75
def test_lift_topology (self ):
76
76
# Test the lift_topology method
0 commit comments